Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(29): 15972-15979, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844389

RESUMO

The thiol group of the cysteine side chain is arguably the most versatile chemical handle in proteins. To expand the scope of established and commercially available thiol bioconjugation reagents, we genetically encoded a second such functional moiety in form of a latent thiol group that can be unmasked under mild physiological conditions. Phenylacetamidomethyl (Phacm) protected homocysteine (HcP) was incorporated and its latent thiol group unmasked on purified proteins using penicillin G acylase (PGA). The enzymatic deprotection depends on steric accessibility, but can occur efficiently within minutes on exposed positions in flexible sequences. The freshly liberated thiol group does not require treatment with reducing agents. We demonstrate the potential of this approach for protein modification with conceptually new schemes for regioselective dual labeling, thiol bioconjugation in presence of a preserved disulfide bond and formation of a novel intramolecular thioether crosslink.


Assuntos
Proteínas/química , Compostos de Sulfidrila/química , Cisteína/química , Dissulfetos/química , Penicilina Amidase/química , Penicilina Amidase/genética
2.
Proc Natl Acad Sci U S A ; 116(44): 22164-22172, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611397

RESUMO

Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.


Assuntos
Inteínas/fisiologia , Processamento de Proteína , Sequência de Aminoácidos , Cisteína , Engenharia Genética , Células HeLa , Humanos , Oxirredução , Fragmentos de Peptídeos/química , Temperatura
3.
Angew Chem Int Ed Engl ; 55(6): 2092-6, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26836343

RESUMO

Poly(acrylamide) P(AAm) gels have become relevant model substrates to study cell response to the mechanical and biochemical properties of the cellular microenvironment. However, current bioconjugation strategies to functionalize P(AAm) gels, mainly using photoinduced arylazide coupling, show poor specificity and hinder conclusive studies of material properties and cellular responses. We describe methylsulfonyl-containing P(AAm) hydrogels for cell culture. These gels allow easy, specific and functional covalent coupling of thiol containing bioligands in tunable concentrations under physiological conditions, while retaining the same swelling, porosity, cytocompatibility, and low protein adsorption of P(AAm) gels. These materials allow quantitative and standardized studies of cell-materials interactions with P(AAm) gels.


Assuntos
Resinas Acrílicas/química , Técnicas de Cultura de Células , Hidrogéis/química , Hidrogéis/síntese química , Compostos de Sulfidrila/química , Células HeLa , Humanos , Estrutura Molecular , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA