Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 652675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953698

RESUMO

Thyroid cancer incidence is markedly increased in volcanic areas where residents are biocontaminated by chronic lifelong exposure to slightly increased metals in the environment. Metals can influence the biology of living cells by a variety of mechanisms, depending not only on the dose and length of exposure but also on the type and stage of differentiation of target cells. We explored the effect of five heavy metals (Cu, Hg, Pd, W and Zn) at nanomolar concentrations (the biocontamination level in residents of the volcanic area in Sicily where thyroid cancer is increased) on stimulating the proliferation of undifferentiated (thyrospheres) and differentiated human thyroid cells. Thyrosphere proliferation was significantly increased after exposure to each individual metal and a greater stimulating effect was observed when a mixture of the examined metals was used. No effect was seen in differentiated thyrocytes. For all metals, the dose-response curve followed a biphasic pattern that is typical of hormesis. Thyrosphere growth concerned the size rather than number, except with the metal mixture. An altered morphology was also observed in metal-treated thyrospheres. Metal-induced proliferation was due to activation of the ERK1/2 pathway, as confirmed by growth inhibition when ERK1/2 signaling was blocked. These studies show that stem/precursor thyroid cells are sensitive to small increases in environmental metal concentrations that are harmless for differentiated thyrocytes.


Assuntos
Metais Pesados/efeitos adversos , Células-Tronco Neoplásicas/citologia , Células Epiteliais da Tireoide/citologia , Glândula Tireoide/citologia , Neoplasias da Glândula Tireoide/metabolismo , Adulto , Idoso , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cloretos/efeitos adversos , Sulfato de Cobre/efeitos adversos , Meios de Cultura , Relação Dose-Resposta a Droga , Exposição Ambiental , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Incidência , Cloreto de Mercúrio/efeitos adversos , Microscopia de Contraste de Fase , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Paládio/efeitos adversos , Fosforilação , Sicília/epidemiologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/epidemiologia , Compostos de Tungstênio/efeitos adversos , Erupções Vulcânicas , Compostos de Zinco/efeitos adversos
2.
Adv Exp Med Biol ; 1169: 81-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487020

RESUMO

Identification of thyroid stem cells in the past few years has made important contributions to our understanding of the cellular and molecular mechanisms that induce tissue regeneration and repair. Embryonic stem (ES) cells and induced-pluripotent stem cells have been used to establish reliable protocols to obtain mature thyrocytes and functional follicles for the treatment of thyroid diseases in mice. In addition, the discovery of resident thyroid progenitor cells, along with other sources of stem cells, has defined in detail the mechanisms responsible for tissue repair upon moderate or severe organ injury.In this chapter, we highlight in detail the current state of research on thyroid stem cells by focusing on (1) the description of the first experiments performed to obtain thyroid follicles from embryonic stem cells, (2) the identification of resident stem cells in the thyroid gland, and (3) the definition of the current translational in vivo and in vitro models used for thyroid tissue repair and regeneration.


Assuntos
Células-Tronco Embrionárias , Glândula Tireoide , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Pesquisa/tendências , Glândula Tireoide/citologia
3.
Endocr Relat Cancer ; 26(8): 713-725, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146257

RESUMO

Thyroid cancer incidence is increased in volcanic areas where environment pollution biocontaminates residents. Tungsten (W) is the most increased heavy metal in drinking water of Mount Etna volcanic area where it exceeds the normal range in the urine of 27% inhabitants. The possible connection between increased tungsten and thyroid cancer has never been studied. We investigated in vitro the effect tungsten on both human thyrocytes in primary culture, thyrospheres (aggregates of stem/precursor thyroid cells) and thyrocytes differentiated from tungsten-exposed thyrospheres. Chronic exposure to low-dose (nanomolar range, as in the urines of volcanic area residents) soluble tungsten had major biological effects on thyroid stem/precursor cells, promoting growth with a biphasic (hormetic) dose-response and reducing apoptosis. No such effects were observed in mature thyrocytes. In addition, tungsten-exposed thyrospheres had abnormal expression of genes commonly altered also in thyroid cancer and increased activation of the DNA-repair proteins H2AX and 53BP1. Moreover, exposure to tungsten decreased thyrosphere differentiation, as indicated by the reduced expression of thyroid-specific genes in derived thyrocytes that also showed preneoplastic changes such as increased anchorage-independent growth, clonogenic growth and migration capacity. The mechanism of action of tungsten on thyroid stem/precursor cells is unclear but involves membrane G-proteins and activation of the ERK signaling pathway. These data indicate that chronic exposure to slightly increased tungsten, harmless for mature thyrocytes, importantly affects the biology of stem/precursor thyroid cells and of their progeny, inducing characteristics of preneoplastic transformation.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Neoplasias da Glândula Tireoide/induzido quimicamente , Tungstênio/toxicidade , Adulto , Idoso , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas
4.
Genes (Basel) ; 10(2)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744101

RESUMO

PATZ1 is a transcriptional factor downregulated in thyroid cancer whose re-expression in thyroid cancer cells leads to a partial reversion of the malignant phenotype, including the capacity to proliferate, migrate, and undergo epithelial-to-mesenchymal transition. We have recently shown that PATZ1 is specifically downregulated downstream of the Ras oncogenic signaling through miR-29b, and that restoration of PATZ1 in Ha-Ras transformed FRTL5 rat thyroid cells is able to inhibit their capacities to proliferate and migrate in vitro. Here, we analyzed the impact of PATZ1 expression on the in vivo tumorigenesis of these cells. Surprisingly, FRTL5-Ras-PATZ1 cells showed enhanced tumor initiation when engrafted in nude mice, even if their tumor growth rate was reduced compared to that of FRTL5-Ras control cells. To further investigate the cause of the enhanced tumor engraftment of FRTL5-Ras-PATZ1 cells, we analyzed the stem-like potential of these cells through their capacity to grow as thyrospheres. The results showed that restoration of PATZ1 expression in these cells increases stem cell markers' expression and self-renewal ability of the thyrospheres while limiting their growth capacity. Therefore, we suggest that PATZ1 may play a role in enhancing the stem cell potential of thyroid cancer cells, but, at the same time, it impairs the proliferation of non-stem cells.


Assuntos
Carcinogênese/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Camundongos , Camundongos Nus , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ratos , Neoplasias da Glândula Tireoide/metabolismo , Fatores de Transcrição/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA