Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673425

RESUMO

Unmanned Aerial Vehicle (UAV) is one of the latest technologies for high spatial resolution 3D modeling of the Earth. The objectives of this study are to assess low-cost UAV data using image radiometric transformation techniques and investigate its effects on global and local accuracy of the Digital Surface Model (DSM). This research uses UAV Light Detection and Ranging (LIDAR) data from 80 meters and UAV Drone data from 300 and 500 meters flying height. RAW UAV images acquired from 500 meters flying height are radiometrically transformed in Matrix Laboratory (MATLAB). UAV images from 300 meters flying height are processed for the generation of 3D point cloud and DSM in Pix4D Mapper. UAV LIDAR data are used for the acquisition of Ground Control Points (GCP) and accuracy assessment of UAV Image data products. Accuracy of enhanced DSM with DSM generated from 300 meters flight height were analyzed for point cloud number, density and distribution. Root Mean Square Error (RMSE) value of Z is enhanced from ±2.15 meters to 0.11 meters. For local accuracy assessment of DSM, four different types of land covers are statistically compared with UAV LIDAR resulting in compatibility of enhancement technique with UAV LIDAR accuracy.

2.
Sensors (Basel) ; 18(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973538

RESUMO

Photogrammetric processing is available in various software solutions and can easily deliver 3D pointclouds as accurate as 1 pixel. Certain applications, e.g., very accurate shape reconstruction in industrial metrology or change detection for deformation studies in geosciences, require results of enhanced accuracy. The tie-point extraction step is the opening in the photogrammetric processing chain and therefore plays a key role in the quality of the subsequent image orientation, camera calibration and 3D reconstruction. Improving its precision will have an impact on the obtained 3D. In this research work we describe a method which aims at enhancing the accuracy of image orientation by adding a second iteration photogrammetric processing. The result from the classical processing is used as a priori information to guide the extraction of refined tie-points of better photogrammetric quality. Evaluated on indoor and UAV acquisitions, the proposed methodology shows a significant improvement on the obtained 3D point accuracy.

3.
Sensors (Basel) ; 9(2): 1259-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22399966

RESUMO

Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA