Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Structure ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39079528

RESUMO

With the advent of modern technologies for cryo-electron tomography (cryo-ET), high-quality tilt series are more rapidly acquired than processed and analyzed. Thus, a robust and fast-automated alignment for batch processing in cryo-ET is needed. While different software packages have made available several approaches for automated marker-based alignment of tilt series, manual user intervention remains necessary for many datasets, thus preventing high-throughput tomography. We have developed a MATLAB-based framework integrated into the Dynamo software package for automatic detection of fiducial markers that generates a robust alignment model with minimal input parameters. This approach allows high-throughput, unsupervised volume reconstruction. This new module extends Dynamo with a large repertory of tools for tomographic alignment and reconstruction, as well as specific visualization browsers to rapidly assess the biological relevance of the dataset. Our approach has been successfully tested on a broad range of datasets that include diverse biological samples and cryo-ET modalities.

2.
Structure ; 32(8): 1239-1247.e3, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823380

RESUMO

Contrast transfer function (CTF) estimation is a necessary step in the cryo-electron tomography (cryoET) workflow and essential for high-resolution in situ structural determination. However, the low signal-to-noise ratio and continuous defocus variation in micrographs of cryoET tilt series make accurate CTF estimation challenging. Here, we report a tilt-series-based joint CTF estimation method implemented in the new software CTFMeasure. The joint estimation method combines all Thon-ring signals in a tilt series to improve the estimation accuracy. By using an objective function involving the CTF parameters and geometric parameters of a cryoET tilt series, CTFMeasure can estimate the CTF parameters of each micrograph and the absolute tilt angle offset of the lamellar sample relative to the sample stage plane, which is usually the glancing angle used during focused ion beam (FIB) milling. Tests on both synthetic and experimental data, as well as subtomogram averaging, demonstrated the accurate CTF estimation of cryoET tilt series by CTFMeasure.


Assuntos
Algoritmos , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Software , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
3.
Biol Imaging ; 4: e6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617998

RESUMO

In this work, we present a pair of tools to improve the fiducial tracking and reconstruction quality of cryo-scanning transmission electron tomography (STET) datasets. We then demonstrate the effectiveness of these two tools on experimental cryo-STET data. The first tool, GoldDigger, improves the tracking of fiducials in cryo-STET by accommodating the changed appearance of highly defocussed fiducial markers. Since defocus effects are much stronger in scanning transmission electron microscopy than in conventional transmission electron microscopy, existing alignment tools do not perform well without manual intervention. The second tool, Checkers, combines image inpainting and unsupervised deep learning for denoising tomograms. Existing tools for denoising cryo-tomography often rely on paired noisy image frames, which are unavailable in cryo-STET datasets, necessitating a new approach. Finally, we make the two software tools freely available for the cryo-STET community.

4.
HardwareX ; 14: e00431, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293572

RESUMO

A 4-dimensional modality of a scanning transmission electron microscope (4D-STEM) acquires diffraction images formed by a coherent and focused electron beam scanning the specimen. Newly developed ultrafast detectors offer a possibility to acquire high throughput diffraction patterns at each pixel of the scan, enabling rapid tilt series acquisition for 4D-STEM tomography. Here we present a solution to the problem of synchronizing the electron probe scan with the diffraction image acquisition, and demonstrate on a fast hybrid-pixel detector camera (ARINA, DECTRIS). Image-guided tracking and autofocus corrections are handled by the freely-available microscope-control software SerialEM, in conjunction with a high angle annular dark field (HAADF) image acquired simultaneously. The open source SavvyScan system offers a versatile set of scanning patterns, operated by commercially available multi-channel acquisition and signal generator computer cards (Spectrum Instrumentation GmbH). Images are recorded only within a sub-region of the total field, so as to avoid spurious data collection during flyback and/or acceleration periods in the scan. Hence, the trigger of the fast camera follows selected pulses from the scan generator clock gated according to the chosen scan pattern. Software and protocol are provided for gating the trigger pulses via a microcontroller (ST Microelectronics ARM Cortex). We demonstrate the system on a standard replica grating and by diffraction imaging of a ferritin specimen.

5.
Nano Lett ; 23(8): 3334-3343, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068052

RESUMO

Obtaining the heterogeneous conformation of small proteins is important for understanding their biological role, but it is still challenging. Here, we developed a multi-tilt nanoparticle-aided cryo-electron microscopy sampling (MT-NACS) technique that enables the observation of heterogeneous conformations of small proteins and applied it to calmodulin. By imaging the proteins labeled by two gold nanoparticles at multiple tilt angles and analyzing the projected positions of the nanoparticles, the distributions of 3D interparticle distances were obtained. From the measured distance distributions, the conformational changes associated with Ca2+ binding and salt concentration were determined. MT-NACS was also used to track the structural change accompanied by the interaction between amyloid-beta and calmodulin, which has never been observed experimentally. This work offers an alternative platform for studying the functional flexibility of small proteins.


Assuntos
Calmodulina , Nanopartículas Metálicas , Microscopia Crioeletrônica/métodos , Ouro/química , Nanopartículas Metálicas/química , Conformação Proteica
6.
Methods Mol Biol ; 2646: 211-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842118

RESUMO

Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Fluxo de Trabalho
7.
Microscopy (Oxf) ; 71(Supplement_1): i15-i22, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275182

RESUMO

Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Individual de Molécula , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica
8.
J Struct Biol ; 214(1): 107827, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915129

RESUMO

In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution images of the three-dimensional spatial arrangement of all members of the proteome. In practice, however, radiation damage creates a tension between recording images at many different tilt angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the available information out at the level of atomic structure. Here, we first review work that explores the optimal strategy for data collection, which currently seems to favor the use of a limited angular range for tilting the sample or even the use of a single image to record the high-resolution information. Looking then to the future, we point to the alternative of so-called "deconvolution microscopy", which may be applied to tilt-series or optically-sectioned, focal series data. Recording data as a focal series has the advantage that little or no translational alignment of frames might be needed, and a three-dimensional reconstruction might require only 2/3 the number of images as does standard tomography. We also point to the unexploited potential of phase plates to increase the contrast, and thus to reduce the electron exposure levels while retaining the ability align and merge the data. In turn, using much lower exposures per image could have the advantage that high-resolution information is retained throughout the full data-set, whether recorded as a tilt series or a focal series of images.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/química , Razão Sinal-Ruído
9.
Biol Imaging ; 2: e7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486831

RESUMO

Thick specimens, as encountered in cryo-scanning transmission electron tomography, offer special challenges to conventional reconstruction workflows. The visibility of features, including gold nanoparticles introduced as fiducial markers, varies strongly through the tilt series. As a result, tedious manual refinement may be required in order to produce a successful alignment. Information from highly tilted views must often be excluded to the detriment of axial resolution in the reconstruction. We introduce here an approach to tilt series alignment based on identification of fiducial particle clusters that transform coherently in rotation, essentially those that lie at similar depth. Clusters are identified by comparison of tilted views with a single untilted reference, rather than with adjacent tilts. The software, called ClusterAlign, proves robust to poor signal to noise ratio and varying visibility of the individual fiducials and is successful in carrying the alignment to the ends of the tilt series where other methods tend to fail. ClusterAlign may be used to generate a list of tracked fiducials, to align a tilt series, or to perform a complete 3D reconstruction. Tools to evaluate alignment error by projection matching are included. Execution involves no manual intervention, and adherence to standard file formats facilitates an interface with other software, particularly IMOD/etomo, tomo3d, and tomoalign.

10.
J Struct Biol ; 213(4): 107778, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416376

RESUMO

TomoAlign is a software package that integrates tools to mitigate two important resolution limiting factors in cryoET, namely the beam-induced sample motion and the contrast transfer function (CTF) of the microscope. The package is especially focused on cryoET of thick specimens where fiducial markers are required for accurate tilt-series alignment and sample motion estimation. TomoAlign models the beam-induced sample motion undergone during the tilt-series acquisition. The motion models are used to produce motion-corrected subtilt-series centered on the particles of interest. In addition, the defocus of each particle at each tilt image is determined and can be corrected, resulting in motion-corrected and CTF-corrected subtilt-series from which the subtomograms can be computed. Alternatively, the CTF information can be passed on so that CTF correction can be carried out entirely within external packages like Relion. TomoAlign serves as a versatile tool that can streamline the cryoET workflow from initial alignment of tilt-series to final subtomogram averaging during in situ structure determination.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Axonema/química , Axonema/ultraestrutura , Endopeptidases/química , Endopeptidases/ultraestrutura , Movimento (Física) , Reprodutibilidade dos Testes , Tetrahymena thermophila/ultraestrutura
11.
J Struct Biol ; 213(2): 107716, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713788

RESUMO

We and others recently developed rapid tilt-series acquisition methods for cryo-electron tomography on a Titan Krios G3i equipped with a single axis holder and a K-series direct electron detector and showed that one of these, the fast-incremental single exposure (FISE) method, significantly accelerates tilt-series acquisition when compared to traditional methods while preserving the quality of the images. Here, we characterize the behavior of our single axis holder in detail during a FISE experiment to optimally balance data quality with speed. We explain our methodology in detail so others can characterize their own stages, and conclude with recommendations for projects with different resolution goals.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/instrumentação
12.
J Struct Biol ; 213(1): 107698, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545353

RESUMO

Cryo-electron tomography (CET) on cryo-focused ion beam (FIB)-milled lamellae is becoming a powerful technique for determining the structure of macromolecular complexes in their native cellular environment. Prior to tomogram reconstruction, CET tilt-series recorded on FIB lamellae need to be aligned. Traditionally, CET tilt-series alignment is performed with 5-20 nm gold fiducials, but it has thus far proven difficult to apply this to FIB lamellae of eukaryotic cells. In here, we describe a simple method to allow uptake of bovine serum albumin (BSA)-gold fiducials into mammalian cells via endocytosis, which can subsequently be used as fiducials for tilt-series alignment of cryo-FIB lamellae. We compare the alignment of tilt-series with BSA-gold fiducials to fiducial-less patch-tracking, and find better alignment results with BSA-gold. This technique can contribute to understand cells at a structural and ultrastructural level with both cryo- and room-temperature electron tomography. Furthermore, fluorescently labeled BSA-gold has the potential to be used as fiducials for correlative light and electron microscopy studies.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Endocitose/fisiologia , Animais , Humanos , Mamíferos , Soroalbumina Bovina/química
13.
Methods Mol Biol ; 2215: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33367997

RESUMO

Cryo-electron tomography (cryo-ET) is an extremely powerful tool which is used to image cellular features in their close-to-native environment at a resolution where both protein structure and membrane morphology can be revealed. Compared to conventional electron microscopy methods for biology, cryo-ET does not include the use of potentially artifact generating agents for sample fixation or visualization. Despite its obvious advantages, cryo-ET has not been widely adopted by cell biologists. This might originate from the overwhelming and constantly growing number of complex ways to record and process data as well as the numerous methods available for sample preparation. In this chapter, we will take one step back and guide the reader through the essential steps of sample preparation using mammalian cells, as well as the basic steps involved in data recording and processing. The described protocol will allow the reader to obtain data that can be used for morphological analysis and precise measurements of biological structures in their cellular environment. Furthermore, this data can be used for more elaborate structural analysis by applying further image processing steps like subtomogram averaging, which is required to determine the structure of proteins.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Imageamento Tridimensional
14.
J Struct Biol X ; 4: 100037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024955

RESUMO

Electron tomography is a technique to obtain three-dimensional structural information of samples. However, the technique is limited by shifts occurring during acquisition that need to be corrected before the reconstruction process. In 2009, we proposed an approach for post-acquisition alignment of tilt series images. This approach was marker-free, based on patch tracking and integrated in free software. Here, we present improvements to the method to make it more reliable, stable and accurate. In addition, we modified the image formation model underlying the alignment procedure to include different deformations occurring during acquisition. We propose a new way to correct these computed deformations to obtain reconstructions with reduced artifacts. The new approach has demonstrated to improve the quality of the final 3D reconstruction, giving access to better defined structures for different transmission electron tomography methods: resin embedded STEM-tomography and cryo-TEM tomography. The method is freely available in TomoJ software.

15.
IUCrJ ; 7(Pt 3): 490-499, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431832

RESUMO

Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.

16.
J Struct Biol ; 208(2): 107-114, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425790

RESUMO

The power of cryo-electron tomography (cryoET) lies in its capability to characterize macromolecules in their cellular context. Structure determination by cryoET, however, is time-consuming compared to single particle approaches. A recent study reported significant acceleration of data acquisition by a fast-incremental single-exposure (FISE) tilt series scheme. Here we improved the method and evaluated its efficiency and performance. We show that (1) FISE combined with the latest generation of direct electron detectors speeds up collection considerably, (2) previous generation (pre-2017) double-tilt axis Titan Krios holders are also suitable for FISE data acquisition, (3) x, y and z-specimen shifts can be compensated for, and (4) FISE tilt series data can generate averages of sub-nanometer resolution. These advances will allow for a widespread adoption of cryoET for high-throughput in situ studies and high-resolution structure determination across different biological research disciplines.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Escherichia coli , Ribossomos/metabolismo , Ribossomos/ultraestrutura
17.
Methods Cell Biol ; 152: 135-178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31326019

RESUMO

For automated acquisition of tilt series for electron tomography, software needs to handle complications such as movements of the sample in x/y and z, increased projected thickness at high tilt, specimen drift, etc. In addition, many applications require special functionality such as low dose acquisition, automated sequential (batch) tomography, or montage tomography. After reviewing how these difficulties can be addressed and a closer look at what advanced acquisition strategies are employed in biosciences, this chapter introduces acquisition software both developed in academia as well as by hardware vendors. It covers the hardware requirements and compatibility, the functional principle and workflow implemented, as well as what advanced functions are supported by the individual programs.


Assuntos
Automação Laboratorial/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software
18.
Methods Cell Biol ; 152: 217-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31326022

RESUMO

Cryo-electron tomography (cryo-ET) allows three-dimensional (3D) visualization of frozen-hydrated biological samples, such as protein complexes and cell organelles, in near-native environments at nanometer scale. Protein complexes that are present in multiple copies in a set of tomograms can be extracted, mutually aligned, and averaged to yield a signal-enhanced 3D structure up to sub-nanometer or even near-atomic resolution. This technique, called subtomogram averaging (StA), is powered by improvements in EM hardware and image processing software. Importantly, StA provides unique biological insights into the structure and function of cellular machinery in close-to-native contexts. In this chapter, we describe the principles and key steps of StA. We briefly cover sample preparation and data collection with an emphasis on image processing procedures related to tomographic reconstruction, subtomogram alignment, averaging, and classification. We conclude by summarizing current limitations and future directions of this technique with a focus on high-resolution StA.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software
19.
J Struct Biol ; 205(3): 1-6, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690142

RESUMO

Recently, it has been shown that the resolution in cryo-tomography could be improved by considering the sample motion in tilt-series alignment and reconstruction, where a set of quadratic polynomials were used to model this motion. One requirement of this polynomial method is the optimization of a large number of parameters, which may limit its practical applicability. In this work, we propose an alternative method for modeling the sample motion. Starting from the standard fiducial-based tilt-series alignment, the method uses the alignment residual as local estimates of the sample motion at the 3D fiducial positions. Then, a scattered data interpolation technique characterized by its smoothness and a closed-form solution is applied to model the sample motion. The motion model is then integrated in the tomographic reconstruction. The new method improves the tomogram quality similar to the polynomial one, with the important advantage that the determination of the motion model is greatly simplified, thereby overcoming one of the major limitations of the polynomial model. Therefore, the new method is expected to make the beam-induced motion correction methodology more accessible to the cryoET community.


Assuntos
Algoritmos , Microscopia Crioeletrônica/estatística & dados numéricos , Tomografia com Microscopia Eletrônica/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/estatística & dados numéricos , Corpos Basais/ultraestrutura , Linhagem Celular , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Humanos , Movimento (Física) , Complexo de Endopeptidases do Proteassoma/ultraestrutura
20.
J Struct Biol ; 205(2): 163-169, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639925

RESUMO

Using a new Titan Krios stage equipped with a single-axis holder, we developed two methods to accelerate the collection of tilt-series. We demonstrate a continuous-tilting method that can record a tilt-series in seconds, but with loss of details finer than ∼4 nm. We also demonstrate a fast-incremental method that can record a tilt-series several-fold faster than current methods and with similar resolution. We characterize the utility of both methods in real biological electron cryotomography workflows. We identify opportunities for further improvements in hardware and software and speculate on the impact such advances could have on structural biology.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA