Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 940
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39148689

RESUMO

Guided surgery has demonstrated significant improvements in patient outcomes in some disease processes. Interest in this field has led to substantial growth in the technologies under investigation. Most likely no single technology will prove to be "best," and combinations of macro- and microscale guidance-using radiological imaging navigation, probes (activatable, perfusion, and molecular-targeted; large- and small-molecule), autofluorescence, tissue intrinsic optical properties, bioimpedance, and other characteristics-will offer patients and surgeons the greatest opportunity for high-success/low-morbidity medical interventions. Problems are arising, however, from the lack of valid testing formats; surgical training simulators suffer the same problems. Small animal models do not accurately recreate human anatomy, especially in terms of tissue volume. Large animal models are expensive and have difficulty replicating many pathological states, particularly when molecular specificity for individual cancers is required. Furthermore, the sheer number of technologies and the potential for synergistic combination leads to exponential growth of testing requirements that is unrealistic for in vivo testing. Therefore, critical need exists to expand the ex vivo/in vitro testing platforms available to investigators and, once validated, a need to increase the acceptance of these methods for funding and regulatory endpoints. Herein is a review of the available ex vivo/in vitro testing formats for guided surgery, a review of their advantages/disadvantages, and consideration for how our field may safely and more swiftly move forward through stronger adoption of these testing and validation methods.

2.
Sci China Life Sci ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39158766

RESUMO

CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.

3.
Genes Genomics ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088190

RESUMO

BACKGROUND: Transposable elements (TEs) contribute to approximately half of the human genome, and along with many other functions, they have been known to play a role in gene regulation in the genome. With TEs' active/repressed states varying across tissue and cell types, they have the potential to regulate gene expression in a tissue-specific manner. OBJECTIVE AND METHODS: To provide a systematic analysis of TEs' contribution in tissue-specific gene regulation, we examined the regulatory elements and genes in association with TE-derived regulatory sequences in 14 human cell lines belonging to 10 different tissue types using the functional genomics data from the ENCODE project. Specifically, we separately analyzed regulatory regions identified by three different approaches (DNase hypersensitive sites (DHS), histone active sites (HA), and histone repressive sites (HR)). RESULTS: These regulatory regions showed to be distinct from each other by sharing less than 2.5% among all three types and more than 95% showed to be cell line-specific. Despite a lower total TE content overall than the genome average, each regulatory sequence type showed enrichment for one or two specific TE type(s): DHS for long terminal repeats (LTRs) and DNA transposons, HA for short interspersed nucleotide elements (SINEs), and HR for LTRs. In contrast, SINE was shown to be overrepresented in all three types of regulatory sequences located in gene-neighboring regions. TE-regulated genes were mostly shown to have cell line specific pattern, and tissue-specific genes (TSGs) showed higher usage of TE regulatory sequences in the tissue of their expression. While TEs in the regulatory sequences showed to be older than their genome-wide counterparts, younger TEs were shown to be more likely used in cell line specific regulatory sequences. CONCLUSIONS: Collectively, our study provided further evidence enforcing an important contribution of TEs to tissue-specific gene regulation in humans.

4.
Front Plant Sci ; 15: 1440872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170780

RESUMO

The EIN3/EIL gene family holds a pivotal role as it encodes a crucial transcription factor in plants. During the process of polyploidization in broomcorn millet (Panicum miliaceum L.), there is an intriguing above-average amplification observed within the EIN3/EIL gene family. Nonetheless, our current knowledge of this gene family in broomcorn millet remains limited. Hence, in this study, we conducted a comprehensive analysis of the EIN3/EIL gene family in broomcorn millet, aiming to provide a deeper understanding of the potential evolutionary changes. Additionally, we analyzed the EIN3/EIL gene family of Panicum hallii L., a close relative of broomcorn millet, to enhance our characterization efforts. Within this study, we identified a total of 15 EIN3/EIL genes specific to broomcorn millet. Through covariance analysis, it was revealed that all PmEIL genes, except PmEIL1 and PmEIL15, had duplicate copies generated through genome-wide duplication events. Importantly, the Ka/Ks values of all duplicated genes were found to be less than 1, indicating strong purifying selection. Phylogenetic analysis showed that these genes could be categorized into four distinct evolutionary branches, showcasing similar characteristics among members within the same branch. However, there appeared to be an uneven distribution of cis-acting elements amid the EIN3/EIL genes. Further examination of transcriptomic data shed light on the diverse spatiotemporal and stress-related expression patterns exhibited by the EIN3/EIL genes in broomcorn millet. Notably, under cold stress, the expression of PmEIL3/4/8/14 was significantly up-regulated, while under drought stress, PmEIL4/5/6 displayed significant up-regulation. Intriguingly, the expression pattern of PmEIL15 showed an opposite pattern in resistant and sensitive cultivars. The findings of this study augment our understanding of the EIN3/EIL gene family in broomcorn millet and offer a valuable reference for future investigations into polyploid studies. Moreover, this study establishes a theoretical foundation for further exploration of the ethylene signaling pathway in broomcorn millet.

5.
Proc Natl Acad Sci U S A ; 121(33): e2406654121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116129

RESUMO

Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.


Assuntos
Edição de Genes , Pulmão , Nanopartículas , Animais , Edição de Genes/métodos , Pulmão/metabolismo , Camundongos , Nanopartículas/química , Cães , Coelhos , Humanos , Sistemas CRISPR-Cas , Sistemas de Liberação de Medicamentos/métodos
6.
Genes (Basel) ; 15(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39062703

RESUMO

The rice blight poses a significant threat to the rice industry, and the discovery of disease-resistant genes is a crucial strategy for its control. By exploring the rich genetic resources of Yuanjiang common wild rice (Oryza rufipogon) and analyzing their expression patterns, genetic resources can be provided for molecular rice breeding. The target genes' expression patterns, subcellular localization, and interaction networks were analyzed based on the annotated disease-resistant genes on the 9th and 10th chromosomes in the rice genome database using fluorescent quantitative PCR technology and bioinformatics tools. Thirty-three disease-resistant genes were identified from the database, including 20 on the 9th and 13 on the 10th. These genes were categorized into seven subfamilies of the NLR family, such as CNL and the G subfamily of the ABC family. Four genes were not expressed under the induction of the pathogen Y8, two genes were significantly down-regulated, and the majority were up-regulated. Notably, the expression levels of nine genes belonging to the ABCG, CN, and CNL classes were significantly up-regulated, yet the expression levels varied among roots, stems, and leaves; one was significantly expressed in the roots, one in the stems, and the remaining seven were primarily highly expressed in the leaves. Two interaction network diagrams were predicted based on the seven highly expressed genes in the leaves: complex networks regulated by CNL proteins and specific networks controlled by ABCG proteins. The disease-resistant genes on the 9th chromosome are actively expressed in response to the induction of rice blight, forming a critical gene pool for the resistance of Yuanjiang common wild rice (O. rufipogon) to rice blight. Meanwhile, the disease-resistant genes on the 10th chromosome not only participate in resisting the rice blight pathogen but may also be involved in the defense against other stem diseases.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/genética , Oryza/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Perfilação da Expressão Gênica/métodos , Cromossomos de Plantas/genética , Transcriptoma
7.
Dev Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971155

RESUMO

CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.

8.
BMC Med Genomics ; 17(1): 186, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010058

RESUMO

BACKGROUND: The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS: We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION: We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.


Assuntos
Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Neoplasias/genética , Especificidade de Órgãos/genética , Regulação Neoplásica da Expressão Gênica , Loci Gênicos
9.
Mol Biol Rep ; 51(1): 876, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083182

RESUMO

BACKGROUND: Mitochondria, essential for cellular energy production through oxidative phosphorylation (OXPHOS), integrate mt-DNA and nuclear-encoded genes. This cooperation extends to the mitochondrial translation machinery, involving crucial mtDNA-encoded RNAs: 22 tRNAs (mt-tRNAs) as adapters and two rRNAs (mt-rRNAs) for ribosomal assembly, enabling mitochondrial-encoded mRNA translation. Disruptions in mitochondrial gene expression can strongly impact energy generation and overall animal health. Our study investigates the tissue-specific expression patterns of mt-tRNAs and mt-rRNAs in buffalo. MATERIAL AND METHODS: To investigate the expression patterns of mt-tRNAs and mt-rRNAs in different tissues and gain a better understanding of tissue-specific variations, RNA-seq was performed on various tissues, such as the kidney, heart, brain, and ovary, from post-pubertal female buffaloes. Subsequently, we identified transcripts that were differentially expressed in various tissue comparisons. RESULTS: The findings reveal distinct expression patterns among specific mt-tRNA and mt-rRNA genes across various tissues, with some exhibiting significant upregulation and others demonstrating marked downregulation in specific tissue contexts. These identified variations reflect tissue-specific physiological roles, underscoring their significance in meeting the unique energy demands of each tissue. Notably, the brain exhibits the highest mtDNA copy numbers and an abundance of mitochondrial mRNAs of our earlier findings, potentially linked to the significant upregulation of mt-tRNAs in brain. This suggests a plausible association between mtDNA replication and the regulation of mtDNA gene expression. CONCLUSION: Overall, our study unveils the tissue-specific expression of mitochondrial-encoded non-coding RNAs in buffalo. As we proceed, our further investigations into tissue-specific mitochondrial proteomics and microRNA studies aim to elucidate the intricate mechanisms within mitochondria, contributing to tissue-specific mitochondrial attributes. This research holds promise to elucidate the critical role of mitochondria in animal health and disease.


Assuntos
Búfalos , Perfilação da Expressão Gênica , Genoma Mitocondrial , Mitocôndrias , Especificidade de Órgãos , RNA Ribossômico , RNA de Transferência , Transcriptoma , Animais , Búfalos/genética , Búfalos/metabolismo , RNA de Transferência/genética , Especificidade de Órgãos/genética , Perfilação da Expressão Gênica/métodos , Genoma Mitocondrial/genética , Feminino , Transcriptoma/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Ribossômico/genética , DNA Mitocondrial/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Fosforilação Oxidativa , Regulação da Expressão Gênica/genética
10.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062915

RESUMO

Cultivated peanut (Arachis hypogaea L.) is a key oil- and protein-providing legume crop of the world. It is full of nutrients, and its nutrient profile is comparable to that of other nuts. Peanut is a unique plant as it showcases a pegging phenomenon, producing flowers above ground, and after fertilization, the developing peg enters the soil and produces seeds underground. This geocarpic nature of peanut exposes its seeds to soil pathogens. Peanut seeds are protected by an inedible pericarp and testa. The pericarp- and testa-specific promoters can be effectively used to improve the seed defense. We identified a pericarp- and testa-abundant expression gene (AhN8DT-2) from available transcriptome expression data, whose tissue-specific expression was further confirmed by the qRT-PCR. The 1827bp promoter sequence was used to construct the expression vector using the pMDC164 vector for further analysis. Quantitative expression of the GUS gene in transgenic Arabidopsis plants showed its high expression in the pericarp. GUS staining showed a deep blue color in the pericarp and testa. Cryostat sectioning of stained Arabidopsis seeds showed that expression is only limited to seed coat (testa), and staining was not present in cotyledons and embryos. GUS staining was not detected in any other tissues, including seedlings, leaves, stems, and roots, except for some staining in flowers. Under different phytohormones, this promoter did not show an increase in expression level. These results indicated that the AhN8DT-2 promoter drives GUS gene expression in a pericarp- and testa-specific manner. The identified promoter can be utilized to drive disease resistance genes, specifically in the pericarp and testa, enhancing peanut seed defense against soil-borne pathogens. This approach has broader implications for improving the resilience of peanut crops and other legumes, contributing to sustainable agricultural practices and food security.


Assuntos
Arachis , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes , Arachis/genética , Arachis/metabolismo , Sementes/genética , Clonagem Molecular/métodos , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética
11.
Am J Hum Genet ; 111(8): 1736-1749, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053459

RESUMO

Mendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context- or tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data. To address these challenges, we propose a multi-context multivariable integrative MR framework, mintMR, for mapping expression and molecular traits as joint exposures. It models the effects of molecular exposures across multiple tissues in each gene region, while simultaneously estimating across multiple gene regions. It uses eQTLs with consistent effects across more than one tissue type as IVs, improving IV consistency. A major innovation of mintMR involves employing multi-view learning methods to collectively model latent indicators of disease relevance across multiple tissues, molecular traits, and gene regions. The multi-view learning captures the major patterns of disease relevance and uses these patterns to update the estimated tissue relevance probabilities. The proposed mintMR iterates between performing a multi-tissue MR for each gene region and joint learning the disease-relevant tissue probabilities across gene regions, improving the estimation of sparse effects across genes. We apply mintMR to evaluate the causal effects of gene expression and DNA methylation for 35 complex traits using multi-tissue QTLs as IVs. The proposed mintMR controls genome-wide inflation and offers insights into disease mechanisms.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Especificidade de Órgãos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
12.
Cancer Lett ; 597: 217068, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901665

RESUMO

With the widespread use of anti-androgen therapy, such as abiraterone and enzalutamide, the incidence of neuroendocrine prostate cancer (NEPC) is increasing. NEPC is a lethal form of prostate cancer (PCa), with a median overall survival of less than one year after diagnosis. In addition to the common bone metastases seen in PCa, NEPC exhibits characteristics of visceral metastases, notably liver metastasis, which serves as an indicator of a poor prognosis clinically. Key factors driving the neuroendocrine plasticity of PCa have been identified, yet the underlying mechanism behind liver metastasis remains unclear. In this study, we identified PROX1 as a driver of neuroendocrine plasticity in PCa, responsible for promoting liver metastases. Mechanistically, anti-androgen therapy alleviates transcriptional inhibition of PROX1. Subsequently, elevated PROX1 levels drive both neuroendocrine plasticity and liver-specific transcriptional reprogramming, promoting liver metastases. Moreover, liver metastases in PCa induced by PROX1 depend on reprogrammed lipid metabolism, a disruption that effectively reduces the formation of liver metastases.


Assuntos
Proteínas de Homeodomínio , Neoplasias Hepáticas , Neoplasias da Próstata , Proteínas Supressoras de Tumor , Masculino , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/secundário
13.
Am J Clin Nutr ; 120(2): 347-359, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851634

RESUMO

BACKGROUND: We previously showed that dietary intervention effects on cardiometabolic health were driven by tissue-specific insulin resistance (IR) phenotype: individuals with predominant muscle IR (MIR) benefited more from a low-fat, high-protein, and high-fiber (LFHP) diet, whereas individuals with predominant liver insulin resistance (LIR) benefited more from a high-monounsaturated fatty acid (HMUFA) diet. OBJECTIVES: To further characterize the effects of LFHP and HMUFA diets and their interaction with tissue-specific IR, we investigated dietary intervention effects on fasting and postprandial plasma metabolite profile. METHODS: Adults with MIR or LIR (40-75 y, BMI 25-40 kg/m2) were randomly assigned to a 12-wk HMUFA or LFHP diet (n = 242). After the exclusion of statin use, 214 participants were included in this prespecified secondary analysis. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, and 240 min) a high-fat mixed meal for quantification of 247 metabolite measures using nuclear magnetic resonance spectroscopy. RESULTS: A larger reduction in fasting VLDL-triacylglycerol (TAG) and VLDL particle size was observed in individuals with MIR following the LFHP diet and those with LIR following the HMUFA diet, although no longer statistically significant after false discovery rate (FDR) adjustment. No IR phenotype-by-diet interactions were found for postprandial plasma metabolites assessed as total area under the curve (tAUC). Irrespective of IR phenotype, the LFHP diet induced greater reductions in postprandial plasma tAUC of the larger VLDL particles and small HDL particles, and TAG content in most VLDL subclasses and the smaller LDL and HDL subclasses (for example, VLDL-TAG tAUC standardized mean change [95% CI] LFHP = -0.29 [-0.43, -0.16] compared with HMUFA = -0.04 [-0.16, 0.09]; FDR-adjusted P for diet × time = 0.041). CONCLUSIONS: Diet effects on plasma metabolite profiles were more pronounced than phenotype-by-diet interactions. An LFHP diet may be more effective than an HMUFA diet for reducing cardiometabolic risk in individuals with tissue-specific IR, irrespective of IR phenotype. Am J Clin Nutr 20xx;x:xx. This trial was registered at the clinicaltrials.gov registration (https://clinicaltrials.gov/study/NCT03708419?term=NCT03708419&rank=1) as NCT03708419 and CCMO registration (https://www.toetsingonline.nl/to/ccmo_search.nsf/fABRpop?readform&unids=3969AABCD9BA27FEC12587F1001BCC65) as NL63768.068.17.


Assuntos
Jejum , Resistência à Insulina , Período Pós-Prandial , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Glicemia/metabolismo , Fígado/metabolismo , Dieta Rica em Proteínas , Músculo Esquelético/metabolismo
14.
Evol Bioinform Online ; 20: 11769343241261814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883803

RESUMO

Background: Pseudogenes are sequences that have lost the ability to transcribe RNA molecules or encode truncated but possibly functional proteins. While they were once considered to be meaningless remnants of evolution, recent researches have shown that pseudogenes play important roles in various biological processes. However, the studies of pseudogenes in the silkworm, an important model organism, are limited and have focused on single or only a few specific genes. Objective: To fill these gaps, we present a systematic genome-wide studies of pseudogenes in the silkworm. Methods: We identified the pseudogenes in the silkworm using the silkworm genome assemblies, transcriptome, protein sequences from silkworm and its related species. Then we used transcriptome datasets from 832 RNA-seq analyses to construct spatio-temporal expression profiles for these pseudogenes. Additionally, we identified tissue-specifically expressed and differentially expressed pseudogenes to further understand their characteristics. Finally, the functional roles of pseudogenes as lncRNAs were systematically analyzed. Results: We identified a total of 4410 pseudogenes, which were grouped into 4 groups, including duplications (DUPs), unitary pseudogenes (Unitary), processed pseudogenes (retropseudogenes, RETs), and fragments (FRAGs). The most of pseudogenes in the domestic silkworm were generated before the divergence of wild and domestic silkworm, however, the domestication may also involve in the accumulation of pseudogenes. These pseudogenes were clearly divided into 2 cluster, a highly expressed and a lowly expressed, and the posterior silk gland was the tissue with the most tissue-specific pseudogenes (199), implying these pseudogenes may be involved in the development and function of silkgland. We identified 3299 lncRNAs in these pseudogenes, and the target genes of these lncRNAs in silkworm pseudogenes were enriched in the egg formation and olfactory function. Conclusions: This study replenishes the genome annotations for silkworm, provide valuable insights into the biological roles of pseudogenes. It will also contribute to our understanding of the complex gene regulatory networks in the silkworm and will potentially have implications for other organisms as well.

15.
J Biomed Mater Res A ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864257

RESUMO

The foreign body reaction (FBR) to biomaterials results in fibrous encapsulation. Excessive capsule fibrosis (capsular contracture) is a major challenge to the long-term stability of implants. Clinical data suggests that the tissue type in contact with silicone breast implants alters susceptibility to developing capsular contracture; however, the tissue-specific inflammatory and fibrotic characteristics of capsule have not been well characterized at the cellular and molecular level. In this study, 60 breast implant capsule samples are collected from patients and stratified by the adjacent tissue type including subcutaneous tissue, glandular breast tissue, or muscle tissue. Capsule thickness, collagen organization, immune and fibrotic cellular populations, and expression of inflammatory and fibrotic markers is quantified with histological staining, immunohistochemistry, and real-time PCR. The findings suggest there are significant differences in M1-like macrophages, CD4+ T cells, CD26+ fibroblasts, and expression of IL-1ß, IL-6, TGF-ß, and collagen type 1 depending on the tissue type abutting the implant. Subglandular breast implant capsule displays a significant increase in inflammatory and fibrotic markers. These findings suggest that the tissue microenvironment contributes uniquely to the FBR. This data could provide new avenues for research and clinical applications to improve the site-specific biocompatibility and longevity of implantable devices.

16.
Mol Biotechnol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878239

RESUMO

Buffalo physiology intricately balances energy, profoundly influencing health, productivity, and reproduction. This study explores nuclear-mitochondrial crosstalk, revealing OXPHOS Complex I gene expression variations in buffalo tissues through high-throughput RNA sequencing. Unveiling tissue-specific disparities, the research elucidates the genomic landscape of crucial energy production genes, with broader implications for veterinary and agricultural progress. Post-slaughter, tissues from post-pubertal female buffaloes underwent meticulous processing and RNA extraction using the TRIzol method. RNA-Seq library preparation and IlluminaHiSeq 2500 sequencing were performed on QC-passed samples. Data underwent stringent filtration, mapping to the Bubalus bubalis genome using HISAT2. DESeq2 facilitated differential expression gene (DEG) analysis focusing on 57 Mitocarta 3-derived genes associated with OXPHOS complex I. Nuclear-encoded mitochondrial protein transcripts of OXPHOS complex 1 exhibited tissue-specific variations, with 51 genes expressing significantly across tissues. DEG analysis emphasized tissue-specific expression patterns, highlighting a balanced OXPHOS complex I subunit expression in the kidney vs. brain. Gene Ontology (GO) enrichment showcased mitochondria-centric terms, revealing distinct proton motive force-driven mitochondrial ATP synthesis regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses emphasized Thermogenesis and OXPHOS pathways, enriching our understanding of tissue-specific energy metabolism. Noteworthy up-regulation of NDUFB10 in the heart and kidney aligned with heightened metabolic activity. Brain-specific up-regulation of NDUFAF6 indicated a focus on mitochondrial function, while variations in NDUFA11 and ACAD9 underscored pivotal roles in the heart and kidney. GO and KEGG analyses highlighted tissue-specific mitochondrial ATP synthesis and NADH dehydrogenase processes, providing molecular insights into organ-specific metabolic demands and regulatory mechanisms. Our study unveils conserved and tissue-specific nuances in nuclear-encoded mitochondrial OXPHOS complex I genes, laying a foundation for understanding diverse energy demands and potential health implications.

17.
Proc Natl Acad Sci U S A ; 121(25): e2322588121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861598

RESUMO

The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisossomos , Proteômica , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteômica/métodos , Lisossomos/metabolismo , Proteoma/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Gônadas/metabolismo , Espectrometria de Massas/métodos , Organelas/metabolismo
18.
Anim Biosci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38938039

RESUMO

Objective: The liver plays a dual role in regulating temperature and immune responses. Examining the influence of Heat stress (HS) on liver T cells contributes significantly to understanding the intricate interplay between the immune system and hepatic tissues under thermal stress. This study focused on investigating the characteristics of the T-cell receptor (TCR) ß chain CDR3 repertoire in bovine liver samples under both HS and pair-fed (PF) environmental conditions. Methods: Sequencing data from six samples sourced from the GEO database underwent annotation. Utilizing immunarch and VDJtool software, the study conducted comprehensive analyses encompassing basic evaluation, clonality assessment, immune repertoire comparison, diversity estimation, gene usage profiling, VJ gene segment pairing scrutiny, clonal tracking, and Kmers analysis. Results: All four TCR chains, namely α, ß, γ, and δ, were detected, with the α chains exhibiting the highest detection frequency, followed closely by the ß chains. The prevalence of αß TCRs in bovine liver samples underscored their crucial role in governing hepatic tissue's physiological functions. The TCR ß CDR3 repertoire showcased substantial inter-individual variability, featuring diverse clonotypes exhibiting distinct amino acid lengths. Intriguingly, HS cattle displayed heightened diversity and clonality, suggesting potential peripheral T cell migration into the liver under environmental conditions. Notably, differential VJ gene pairings were observed in HS cattle compared to the PF, despite individual variations in V and J gene utilization. Additionally, while most high-frequency amino acid 5-mers remained consistent between the HS and PF, GELHF and YDYHF were notably prevalent in the HS group. Across all samples, a prevalent trend of high-frequency 5mers skewed towards polar and hydrophobic amino acids was evident. Conclusion: This study elucidates the characteristics of liver TCR ß chain CDR3 repertoire under HS conditions, enhancing our understanding of HS implications.

19.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844832

RESUMO

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas
20.
Plants (Basel) ; 13(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931036

RESUMO

Thorough and precise gene structure annotations are essential for maximizing the benefits of genomic data and unveiling valuable genetic insights. The cucumber genome was first released in 2009 and updated in 2019. To increase the accuracy of the predicted gene models, 64 published RNA-seq data and 9 new strand-specific RNA-seq data from multiple tissues were used for manual comparison with the gene models. The updated annotation file (V3.1) contains an increased number (24,145) of predicted genes compared to the previous version (24,317 genes), with a higher BUSCO value of 96.9%. A total of 6231 and 1490 transcripts were adjusted and newly added, respectively, accounting for 31.99% of the overall gene tally. These newly added and adjusted genes were renamed (CsaV3.1_XGXXXXX), while genes remaining unaltered preserved their original designations. A random selection of 21 modified/added genes were validated using RT-PCR analyses. Additionally, tissue-specific patterns of gene expression were examined using the newly obtained transcriptome data with the revised gene prediction model. This improved annotation of the cucumber genome will provide essential and accurate resources for studies in cucumber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA