RESUMO
Oral antigen exposure is a powerful, non-invasive route to induce immune tolerance to dietary antigens, and has been modestly successful at prolonging graft survival in rodent models of transplantation. To harness the mechanisms of oral tolerance for promoting long-term graft acceptance, we developed a mouse model where the antigen ovalbumin (OVA) was introduced orally prior to transplantation with skin grafts expressing OVA. Oral OVA treatment pre-transplantation promoted permanent graft acceptance and linked tolerance to skin grafts expressing OVA fused to the additional antigen 2W. Tolerance was donor-specific, as secondary donor-matched, but not third-party allografts were spontaneously accepted. Oral OVA treatment promoted an anergic phenotype in OVA-reactive CD4+ and CD8+ conventional T cells (Tconvs) and expanded OVA-reactive Tregs pre-transplantation. However, skin graft acceptance following oral OVA resisted partial depletion of Tregs and blockade of PD-L1. Mechanistically, we revealed a role for the proximal gut draining lymph nodes (gdLNs) in mediating this effect, as an intestinal infection that drains to the proximal gdLNs prevented tolerance induction. Our study extends previous work applying oral antigen exposure to transplantation and serves as proof of concept that the systemic immune mechanisms supporting oral tolerance are sufficient to promote long-term graft acceptance.
Assuntos
Isoantígenos , Transplante de Pele , Animais , Antígenos , Antígeno B7-H1 , Sobrevivência de Enxerto , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina , Tolerância ao TransplanteRESUMO
T cells must be activated and become effectors first before executing allograft rejection, a process that is regulated by diverse signals and transcription factors. In this study, we studied the basic leucine zipper ATF-like transcription factor (BATF) family members in regulating T cell activities in a heart transplant model and found that mice deficient for both BATF and BATF3 (Batf-/- Batf3-/- mice) spontaneously accept the heart allografts long-term without tolerizing therapies. Similarly, adoptive transfer of wild type T cells into Rag1-/- hosts induced prompt rejection of heart and skin allografts, whereas the Batf-/- Batf3-/- T cells failed to do so. Analyses of graft-infiltrating cells showed that Batf-/- Batf3-/- T cells infiltrate the graft but fail to acquire an effector phenotype (CD44high KLRG1+ ). Co-transfer experiments in a T cell receptor transgenic TEa model revealed that the Batf-/- Batf3-/- T cells fail to expand in vivo, retain a quiescent phenotype (CD62L+ CD127+ ), and unable to produce effector cytokines to alloantigen stimulation, which contrasted sharply to that of wild type T cells. Together, our data demonstrate that the BATF and BATF3 are critical regulators of T effector functions, thus making them attractive targets for therapeutic interventions in transplant settings.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Linfócitos T , Aloenxertos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica , Fatores Reguladores de Interferon , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismoRESUMO
Eliminating cytoreductive conditioning from chimerism-based tolerance protocols would facilitate clinical translation. Here we investigated the impact of major histocompatibility complex (MHC) and minor histocompatibility antigen (MiHA) barriers on mechanisms of tolerance and rejection in this setting. Transient depletion of natural killer (NK) cells at the time of bone marrow (BM) transplantation (BMT) (20 × 106 BALB/c BM cells â C57BL/6 recipients under costimulation blockade [CB] and rapamycin) prevented BM rejection. Despite persistent levels of mixed chimerism, BMT recipients gradually rejected skin grafts from the same donor strain. Extending NK cell depletion did not improve skin graft survival. However, F1 (C57BL/6×BALB/c) donors, which do not elicit NK cell-mediated rejection, induced durable chimerism and tolerance. In contrast, if F1 donors with BALB/c background only were used (BALB/c×BALB.B), no tolerance was observed. In the absence of MiHA disparities (B10.D2 donors, MHC-mismatch only), temporal NK cell depletion established stable chimerism and tolerance. Conversely, MHC identical BM (BALB.B donors, MiHA mismatch only) readily engrafted without NK cell depletion but no skin graft tolerance ensued. Therefore, we conclude that under CB and rapamycin, MHC disparities provoke NK cell-mediated BM rejection in nonirradiated recipients whereas MiHA disparities do not prevent BM engraftment but impede skin graft tolerance in established mixed chimeras.
Assuntos
Quimerismo , Tolerância Imunológica , Animais , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Pele , Quimeras de Transplante , Tolerância ao TransplanteRESUMO
We assessed the role of donor liver non-conventional plasmacytoid dendritic cells (pDCs) in spontaneous liver transplant tolerance in a fully MHC-mismatched (C57BL/6 (H2b ) to C3H (H2k )) mouse model. Compared with spleen pDCs, liver pDCs expressed higher levels of DNAX-activating protein of 12 kDa and its co-receptor, triggering receptor expressed by myeloid cells 2, and higher ratios of programed death ligand-1 (PD-L1):costimulatory CD80/CD86 in the steady state and after Toll-like receptor 9 ligation. Moreover, liver pDCs potently suppressed allogeneic CD4+ and CD8+ T cell proliferative responses. Survival of pDC-depleted livers was much poorer (median survival time: 25 days) than that of either untreated donor livers or pDC-depleted syngeneic donor livers that survived indefinitely. Numbers of forkhead box p3 (FoxP3)+ regulatory T cells in grafts and mesenteric lymph nodes of mice given pDC-depleted allogeneic livers were reduced significantly compared with those in recipients of untreated livers. Graft-infiltrating CD8+ T cells with an exhausted phenotype (programed cell death protein 1+ , T cell immunoglobulin and mucin domain-containing protein 3+ ) were also reduced in recipients of pDC-depleted livers. PD1-PD-L1 pathway blockade reversed the reduction in exhausted T cells. These novel observations link immunoregulatory functions of liver interstitial pDCs, alloreactive T cell exhaustion, and spontaneous liver transplant tolerance.
Assuntos
Transplante de Fígado , Linfócitos T Reguladores , Animais , Linfócitos T CD8-Positivos , Células Dendríticas , Humanos , Doadores Vivos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BLRESUMO
Organ transplantation is often lifesaving, but the long-term deleterious effects of combinatorial immunosuppression regimens and allograft failure cause significant morbidity and mortality. Long-term graft survival in the absence of continuing immunosuppression, defined as operational tolerance, has never been described in the context of multiple major histocompatibility complex (MHC) mismatches. Here, we show that miR-142 deficiency leads to indefinite allograft survival in a fully MHC mismatched murine cardiac transplant model in the absence of exogenous immunosuppression. We demonstrate that the cause of indefinite allograft survival in the absence of miR-142 maps specifically to the T cell compartment. Of therapeutic relevance, temporal deletion of miR-142 in adult mice prior to transplantation of a fully MHC mismatched skin allograft resulted in prolonged allograft survival. Mechanistically, miR-142 directly targets Tgfbr1 for repression in regulatory T cells (TREG ). This leads to increased TREG sensitivity to transforming growth factor - beta and promotes transplant tolerance via an augmented peripheral TREG response in the absence of miR-142. These data identify manipulation of miR-142 as a promising approach for the induction of tolerance in human transplantation.
Assuntos
Rejeição de Enxerto , MicroRNAs , Aloenxertos , Animais , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Linfócitos T Reguladores , Tolerância ao Transplante , Transplante HomólogoRESUMO
Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.
Assuntos
Imunidade Inata , Tecido Linfoide , Aloenxertos , Brônquios , Rejeição de Enxerto/etiologia , Humanos , Interleucinas , Pulmão , Linfócitos , Interleucina 22RESUMO
Costimulatory blockade-induced murine cardiac allograft survival requires intragraft accumulation of CD11b+ Ly6Clo Ly6G- regulatory myeloid cells (Mregs) that expand regulatory T cells (Tregs) and suppress effector T cells (Teffs). We previously showed that C5a receptor (C5aR1) signaling on T cells activates Teffs and inhibits Tregs, but whether and/or how C5aR1 affects Mregs required for transplant survival is unknown. Although BALB/c hearts survived >60 days in anti-CD154 (MR1)-treated or cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig-treated wild-type (WT) recipients, they were rejected at ~30 days in MR1-treated or CTLA4-Ig-treated recipients selectively deficient in C5aR1 restricted to myeloid cells (C5ar1fl/fl xLysM-Cre). This accelerated rejection was associated with ~2-fold more donor-reactive T cells and ~40% less expansion of donor-reactive Tregs. Analysis of graft-infiltrating mononuclear cells on posttransplant day 6 revealed fewer Ly6Clo monocytes in C5ar1fl/fl xLysM-Cre recipients. Expression profiling of intragraft Ly6Clo monocytes showed that C5aR1 deficiency downregulated genes related to migration/locomotion without changes in genes associated with suppressive function. Cotransfer of C5ar1fl/fl and C5ar1fl/fl xLysM-Cre myeloid cells into MR1-treated allograft recipients resulted in less accumulation of C5ar1-/- cells within the allografts, and in vitro assays confirmed that Ly6Chi myeloid cells migrate to C5a/C5aR1-initiated signals. Together, our results newly link myeloid cell-expressed C5aR1 to intragraft accumulation of myeloid cells required for prolongation of heart transplant survival induced by costimulatory blockade.
Assuntos
Abatacepte/imunologia , Antígeno CTLA-4/imunologia , Movimento Celular , Sobrevivência de Enxerto , Transplante de Coração/métodos , Células Supressoras Mieloides/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Abatacepte/química , Abatacepte/metabolismo , Aloenxertos , Animais , Antígeno CTLA-4/metabolismo , Rejeição de Enxerto , Cardiopatias/imunologia , Cardiopatias/terapia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Receptor da Anafilatoxina C5a/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologiaRESUMO
Tissue resident lymphocytes are present within many organs, and are presumably transferred at transplantation, but their impact on host immunity is unclear. Here, we examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit host alloimmunity and prolong allograft survival. Transfer of donor-strain lymphocytes was first assessed by identifying circulating donor-derived CD4 T cells in 21 consecutive human lung transplant recipients, with 3 patterns of chimerism apparent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months, and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then confirmed by analysis of leukocyte filters recovered from ex vivo normothermic perfusion circuits of human kidneys retrieved for transplantation. Finally, in a murine model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ recovery resulted in markedly accelerated heart allograft rejection and augmented host effector antibody responses. Conversely, adoptive transfer or purified donor-strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and more effectively so than following administration of recipient nT-regs. In summary, following transplantation, passenger donor-strain nT-regs can inhibit host adaptive immune responses and prolong allograft survival. Isolated donor-derived nT-regs may hold potential as a cellular therapy to improve transplant outcomes.
Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Rim , Transplante de Pulmão , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Aloenxertos , Animais , Linhagem da Célula , Transplante de Coração , Humanos , Sistema Imunitário , Imunidade Humoral , Isoanticorpos/imunologia , Camundongos , Preservação de Órgãos , Perfusão , Doadores de Tecidos , Transplante Homólogo , Resultado do TratamentoRESUMO
Immunologic graft rejection is the main complication after corneal transplant into pathologically prevascularized so-called high-risk eyes. The aim of this study was to evaluate whether ultraviolet (UV) light crosslinking can regress pathologic corneal blood and lymphatic vessels and thereby improve subsequent graft survival. Using the murine model of suture-induced corneal neovascularization, we found that corneal crosslinking with UVA light and riboflavin regressed both preexisting blood and lymphatic vessels significantly via induction of apoptosis in vascular endothelial cells. In addition, macrophages and CD45+ cell counts were significantly reduced. Consistently, corneal crosslinking reduced keratocyte density and corneal thickness without affecting corneal nonvascular endothelial cells, iris, and lens depending on the crosslinking duration. Furthermore, using the murine model of corneal transplant, long-term graft survival was significantly promoted (P < .05) and CD4+ CD25+ FoxP3+ T regulatory cells were upregulated (P < .01) in high-risk eyes preoperatively treated with crosslinking. Our results suggest UV light crosslinking as a novel method to regress both pathologic corneal blood and lymphatic vessels and to reduce CD45+ inflammatory cells. Furthermore, this study demonstrates for the first time that preoperative corneal crosslinking in prevascularized high-risk eyes can significantly improve subsequent graft survival and may become a promising novel therapy in the clinic.
Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Doenças da Córnea/terapia , Transplante de Córnea/métodos , Reagentes de Ligações Cruzadas/farmacologia , Sobrevivência de Enxerto , Vasos Linfáticos/efeitos dos fármacos , Riboflavina/farmacologia , Raios Ultravioleta , Animais , Vasos Sanguíneos/patologia , Doenças da Córnea/patologia , Neovascularização da Córnea , Modelos Animais de Doenças , Feminino , Linfangiogênese , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , FotoquimioterapiaRESUMO
We have previously shown that 12 days of high-dose calcineurin inhibition induced tolerance in MHC inbred miniature swine receiving MHC-mismatched lung, kidney, or co-transplanted heart/kidney allografts. However, if lung grafts were procured from donation after brain death (DBD), and transplanted alone, they were rejected within 19-45 days. Here, we investigated whether donor brain death with or without allograft ischemia would also prevent tolerance induction in kidney or heart/kidney recipients. Four kidney recipients treated with 12 days of calcineurin inhibition received organs from donors rendered brain dead for 4 hours. Six heart/kidney recipients also treated with calcineurin inhibition received organs from donors rendered brain dead for 4 hours, 8 hours, or 4 hours with 4 additional hours of cold storage. In contrast to lung allograft recipients, all isolated kidney or heart/kidney recipients that received organs from DBD donors achieved long-term survival (>100 days) without histologic evidence of rejection. Proinflammatory cytokine gene expression was upregulated in lungs and hearts, but not kidney allografts, after brain death. These data suggest that the deleterious effects of brain death and ischemia on tolerance induction are organ-specific, which has implications for the application of tolerance to clinical transplantation.
Assuntos
Morte Encefálica/fisiopatologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Isquemia/fisiopatologia , Transplante de Rim , Transplante de Pulmão , Tolerância ao Transplante/imunologia , Animais , Citocinas/genética , Citocinas/metabolismo , Sobrevivência de Enxerto , Especificidade de Órgãos , Suínos , Porco Miniatura , Doadores de TecidosRESUMO
Current pharmacologic regimens in transplantation prevent allograft rejection through systemic recipient immunosuppression but are associated with severe morbidity and mortality. The ultimate goal of transplantation is the prevention of allograft rejection while maintaining recipient immunocompetence. We hypothesized that allografts could be engineered ex vivo (after allotransplant procurement but before transplantation) by using mesenchymal stem cell-based therapy to generate localized immunomodulation without affecting systemic recipient immunocompetence. To this end, we evaluated the therapeutic efficacy of bone marrow-derived mesenchymal stem cells in vitro and activated them toward an immunomodulatory fate by priming in inflammatory or hypoxic microenvironments. Using an established rat hindlimb model for allotransplantation, we were able to significantly prolong rejection-free allograft survival with a single perioperative ex vivo infusion of bone marrow-derived mesenchymal stem cells through the allograft vasculature, in the absence of long-term pharmacologic immunosuppression. Critically, transplanted rats rejected a second, nonengineered skin graft from the same donor species to the contralateral limb at a later date, demonstrating that recipient systemic immunocompetence remained intact. This study represents a novel approach in transplant immunology and highlights the significant therapeutic opportunity of the ex vivo period in transplant engineering.
Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Membro Posterior/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Transplante de Pele/efeitos adversos , Alotransplante de Tecidos Compostos Vascularizados/métodos , Animais , Rejeição de Enxerto/etiologia , Tolerância Imunológica/imunologia , Terapia de Imunossupressão , Ratos , Ratos Endogâmicos Lew , Tolerância ao Transplante/imunologiaRESUMO
Immunological requirements for rejection and tolerance induction differ between various organs. While memory CD8+ T cells are considered a barrier to immunosuppression-mediated acceptance of most tissues and organs, tolerance induction after lung transplantation is critically dependent on central memory CD8+ T lymphocytes. Here we demonstrate that costimulation blockade-mediated tolerance after lung transplantation is dependent on programmed cell death 1 (PD-1) expression on CD8+ T cells. In the absence of PD-1 expression, CD8+ T cells form prolonged interactions with graft-infiltrating CD11c+ cells; their differentiation is skewed towards an effector memory phenotype and grafts are rejected acutely. These findings extend the notion that requirements for tolerance induction after lung transplantation differ from other organs. Thus, immunosuppressive strategies for lung transplant recipients need to be tailored based on the unique immunological properties of this organ.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Pulmão , Receptor de Morte Celular Programada 1/metabolismo , Aloenxertos , Animais , Rejeição de Enxerto/patologia , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
We previously reported that transplantation (Tx) of prevascularized donor islets as composite islet-kidneys (IK) reversed diabetic hyperglycemia in both miniature swine and baboons. In order to enhance this strategy's potential clinical applicability, we have now combined this approach with hematopoietic stem cell (HSC) Tx in an attempt to induce tolerance in nonhuman primates. IKs were prepared by isolating islets from 70% partial pancreatectomies and injecting them beneath the autologous renal capsule of five rhesus monkey donors at least 3 months before allogeneic IK Tx. HSC Tx was performed after mobilization and leukapheresis of the donors and conditioning of the recipients with total body irradiation, T cell depletion, and cyclosporine. One IK was harvested for histologic analysis and four were transplanted into diabetic recipients. IK Tx was performed either 20-22 (n = 3) or 208 (n = 1) days after HSC Tx. All animals accepted IKs without rejection. All recipients required >20 U/day insulin before IK Tx to maintain <200 mg/dL, whereas after IK Tx, three animals required minimal doses of insulin (1-3 U/day) and one animal was insulin free. These results constitute a proof-of-principle that this IK tolerance strategy may provide a cure for both end-stage renal disease and diabetes without the need for immunosuppression.
Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/irrigação sanguínea , Transplante de Rim , Rim/irrigação sanguínea , Animais , Feminino , Rejeição de Enxerto/prevenção & controle , Macaca mulatta , Masculino , Transplante HomólogoRESUMO
CD4+ CD25high FOXP3+ regulatory T cells (Tregs) are involved in graft-specific tolerance after solid organ transplantation. However, adoptive transfer of polyspecific Tregs alone is insufficient to prevent graft rejection even in rodent models, indicating that graft-specific Tregs are required. We developed a highly specific chimeric antigen receptor that recognizes the HLA molecule A*02 (referred to as A2-CAR). Transduction into natural regulatory T cells (nTregs) changes the specificity of the nTregs without alteration of their regulatory phenotype and epigenetic stability. Activation of nTregs via the A2-CAR induced proliferation and enhanced the suppressor function of modified nTregs. Compared with nTregs, A2-CAR Tregs exhibited superior control of strong allospecific immune responses in vitro and in humanized mouse models. A2-CAR Tregs completely prevented rejection of allogeneic target cells and tissues in immune reconstituted humanized mice in the absence of any immunosuppression. Therefore, these modified cells have great potential for incorporation into clinical trials of Treg-supported weaning after allogeneic transplantation.
Assuntos
Rejeição de Enxerto/prevenção & controle , Antígeno HLA-A2/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Aloenxertos , Animais , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Tolerância ao Transplante/imunologiaRESUMO
The emergence of skin-containing vascularized composite allografts (VCAs) has provided impetus to understand factors affecting rejection and tolerance of skin. VCA tolerance can be established in miniature swine across haploidentical MHC barriers using mixed chimerism. Because the deceased donor pool for VCAs does not permit MHC antigen matching, clinical VCAs are transplanted across varying MHC disparities. We investigated whether sharing of MHC class I or II antigens between donors and recipients influences VCA skin tolerance. Miniature swine were conditioned nonmyeloablatively and received hematopoietic stem cell transplants and VCAs across MHC class I (n = 3) or class II (n = 3) barriers. In vitro immune responsiveness was assessed, and VCA skin-resident leukocytes were characterized by flow cytometry. Stable mixed chimerism was established in all animals. MHC class II-mismatched chimeras were tolerant of VCAs. MHC class I-mismatched animals, however, rejected VCA skin, characterized by infiltration of recipient-type CD8+ lymphocytes. Systemic donor-specific nonresponsiveness was maintained, including after VCA rejection. This study shows that MHC antigen matching influences VCA skin rejection and suggests that local regulation of immune tolerance is critical in long-term acceptance of all VCA components. These results help elucidate novel mechanisms underlying skin tolerance and identify clinically relevant VCA tolerance strategies.
Assuntos
Aloenxertos Compostos/transplante , Rejeição de Enxerto/prevenção & controle , Complexo Principal de Histocompatibilidade/imunologia , Transplante de Pele/efeitos adversos , Quimeras de Transplante/imunologia , Tolerância ao Transplante/imunologia , Alotransplante de Tecidos Compostos Vascularizados/efeitos adversos , Animais , Aloenxertos Compostos/imunologia , Aloenxertos Compostos/patologia , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/imunologia , Isoanticorpos/sangue , Isoanticorpos/imunologia , Suínos , Porco MiniaturaRESUMO
Recent clinical studies suggest that operational allograft tolerance can be persistent, but long-term surviving allografts can be rejected in a subset of patients, sometimes after episodes of infection. In this study, we examined the impact of Listeria monocytogenes (Lm) infection on the quality of tolerance in a mouse model of heart allograft transplantation. Lm infection induced full rejection in 40% of tolerant recipients, with the remaining experiencing a rejection crisis or no palpable change in their allografts. In the surviving allografts on day 8 postinfection, graft-infiltrating cell numbers increased and exhibited a loss in the tolerance gene signature. By day 30 postinfection, the tolerance signature was broadly restored, but with a discernible reduction in the expression of a subset of 234 genes that marked tolerance and was down-regulated at day 8 post-Lm infection. We further demonstrated that the tolerant state after Lm infection was functionally eroded, as rejection of the long-term surviving graft was induced with anti-PD-L1 whereas the same treatment had no effect in noninfected tolerant mice. Collectively, these observations demonstrate that tolerance, even if initially robust, exists as a continuum that can be eroded following bystander immune responses that accompany certain infections.
Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Listeria monocytogenes/imunologia , Listeriose/imunologia , Tolerância ao Transplante/imunologia , Animais , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/virologia , Listeriose/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante HomólogoRESUMO
Thymic involution is associated with age-related changes of the immune system. Utilizing our innovative technique of transplantation of a thymus as an isolated vascularized graft in MHC-inbred miniature swine, we have previously demonstrated that aged thymi are rejuvenated after transplantation into juvenile swine. Here we have studied the role of insulin-like growth factor (IGF) and forkhead-box protein-N1 (FOXN1) as well as bone marrow (BM) in thymic rejuvenation and involution. We examined thymic rejuvenation and involution by means of histology and flow cytometry. Thymic function was assessed by the ability to induce tolerance of allogeneic kidneys. Aged thymi were rejuvenated in a juvenile environment, and successfully induced organ tolerance, while juvenile thymi in aged recipients involuted and had a limited ability to induce tolerance. However, juvenile BM inhibited the involution process of juvenile thymi in aged recipients. An elevated expression of both FOXN1 and IGF1 receptors (IGF-1R) was observed in juvenile thymi and rejuvenated thymi. Juvenile BM plays a role in promoting the local thymic milieu as indicated by its ability to inhibit thymic involution in aged animals. The expression of FOXN1 and IGF-1R was noted to increase under conditions that stimulated rejuvenation, suggesting that these factors are involved in thymic recovery.
Assuntos
Medula Óssea/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Receptor IGF Tipo 1/metabolismo , Rejuvenescimento/fisiologia , Timo/fisiologia , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Sobrevivência de Enxerto , Tolerância Imunológica , Receptor IGF Tipo 1/genética , Suínos , Porco Miniatura , Timo/transplanteRESUMO
Short-term outcomes of kidney transplantation have improved dramatically, but chronic rejection and regimen-related toxicity continue to compromise overall patient outcomes. Development of regulatory T cells (Tregs) as a means to decrease alloresponsiveness and limit the need for pharmacologic immunosuppression is an active area of preclinical and clinical investigation. Nevertheless, the immunomodulatory effects of end-stage renal disease on the efficacy of various strategies to generate and expand recipient Tregs for kidney transplantation are incompletely characterized. In this study, we show that Tregs can be successfully generated from either freshly isolated or previously cryopreserved uremic recipient (responder) and healthy donor (stimulator) peripheral blood mononuclear cells using the strategy of ex vivo costimulatory blockade with belatacept during mixed lymphocyte culture. Moreover, these Tregs maintain a CD3(+) CD4(+) CD25(+) CD127(lo) surface phenotype, high levels of intracellular FOXP3 and significant demethylation of the FOXP3 Treg-specific demethylation region on allorestimulation with donor stimulator cells. These data support evaluation of this simple, brief Treg production strategy in clinical trials of mismatched kidney transplantation.
Assuntos
Isoantígenos/imunologia , Falência Renal Crônica/cirurgia , Transplante de Rim , Leucócitos Mononucleares/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante/imunologia , Abatacepte/imunologia , Adulto , Idoso , Feminino , Seguimentos , Fatores de Transcrição Forkhead/imunologia , Taxa de Filtração Glomerular , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Conduta ExpectanteRESUMO
Recently, the immune-regulating potential of invariant natural killer T (iNKT) cells has attracted considerable attention. We previously reported that a combination treatment with a liposomal ligand for iNKT cells and an anti-CD154 antibody in a sublethally irradiated murine bone marrow transplant (BMT) model resulted in the establishment of mixed hematopoietic chimerism through in vivo expansion of regulatory T cells (Tregs). Herein, we show the lack of alloreactivity of CD8(+) T cells in chimeras and an early expansion of donor-derived dendritic cells (DCs) in the recipient thymi accompanied by a sequential reduction in the donor-reactive Vß-T cell receptor repertoire, suggesting a contribution of clonal deletion in this model. Since thymic expansion of donor DCs and the reduction in the donor-reactive T cell repertoire were precluded with Treg depletion, we presumed that Tregs should preform before the establishment of clonal deletion. In contrast, the mice thymectomized before BMT failed to increase the number of Tregs and to establish CD8(+) T cell tolerance, suggesting the presence of mutual dependence between the thymic donor-DCs and Tregs. These results provide new insights into the regulatory mechanisms that actively promote clonal deletion.