Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 10: 1419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849669

RESUMO

The Comprehensive in vitro Proarrhythmia Assay (CiPA) project suggested the torsade metric score (TMS) which requires substantial computing resources as a useful biomarker to predict proarrhythmic risk from human ether-à-go-go-related gene (hERG) and a few other ion channel block data. The TMS was useful to predict low TdP risks of drugs blocking Na+ (ranolazine) and Ca2+ (verapamil) channels as well as the hERG channel. However, Mistry asserted that the simple linear metric, Bnet reflecting net blockade of a few influential ion channels has similar predictive power. Here we compared the predictability of Bnet and TMS for the 12 training and 16 validation CiPA drugs which were pre-classified into three categories according to the known TdP risks (low, intermediate, and high risk) by CiPA. Bnet at 5×Cmax (Bnet5×Cmax) was calculated using the ion-channel IC50 and Hill coefficients of CiPA drugs collected from previous reports by the CiPA team and others. The receiver operating characteristic curve area under curve (ROC AUC) values for TMS and Bnet5×Cmax as performance metrics in discerning low versus intermediate/high risk categories for the 28 CiPA drugs were similar. However, Bnet5×Cmax was much inferior to TMS at discerning between intermediate- and high-risk drugs. Dynamic Bnet, which used in silico hERG dynamic parameters unlike conventional Bnet, improved the misspecification. Thus, we propose that Bnet5×Cmax is used for quick screening of TdP risks of drug candidates and if the "intermediate/high" risk is predicted by Bnet5×Cmax, in silico approaches, such as dynamic Bnet or TMS, may be further considered.

2.
Ther Innov Regul Sci ; 53(4): 519-525, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30157676

RESUMO

A Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA-sponsored Think Tank Meeting was convened in Washington, DC, on May 21, 2018, to bring together scientists, clinicians, and regulators from multiple geographic regions to evaluate progress to date in the Comprehensive In Vitro Proarrhythmia Assay (CiPA) Initiative, a new paradigm to evaluate proarrhythmic risk. Study reports from the 4 different components of the CiPA paradigm (ionic current studies, in silico modeling to generate a Torsade Metric Score, human induced pluripotent stem cell-derived ventricular cardiomyocytes, and clinical ECG assessments including J-Tpeakc) were presented and discussed. This paper provides a high-level summary of the CiPA data presented at the meeting.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Bioensaio , Simulação por Computador , Eletrocardiografia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Canais Iônicos/fisiologia , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA