Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1375958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766471

RESUMO

Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum. We tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models. Our results provide evidence that NSC concentrations in stems and branches are decoupled from plant functional traits. while those in roots are weakly coupled with plant functional traits. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow trait spectrum was coordinated, as species with higher leaf NSC had trait values associated with resource conservative species, such as lower SLA, leaf N, and leaf P. We also detected a small effect of leaf habit on the variation of NSC concentrations in branches and roots. Efforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the 'fast-slow' plant economics spectrum and that capture how species respond to a broad range of global change drivers.

2.
Am J Bot ; 110(8): e16207, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347451

RESUMO

PREMISE: Annual plants often exhibit drought-escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. METHODS: We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal-drought induced responses in drought resistance traits. RESULTS: Populations varied considerably in drought-escape- and drought-avoidance-associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water-use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. CONCLUSIONS: Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable.


Assuntos
Mimulus , Mimulus/genética , Resistência à Seca , Fenótipo , Secas , Água
3.
J Ecol ; 110(6): 1344-1355, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35915621

RESUMO

Leaf morphological traits vary systematically along climatic gradients. However, recent studies in plant functional ecology have mainly analysed quantitative traits, while numerical models of species distributions and vegetation function have focused on traits associated with resource acquisition; both ignore the wider functional significance of leaf morphology.A dataset comprising 22 leaf morphological traits for 662 woody species from 92 sites, representing all biomes present in China, was subjected to multivariate analysis in order to identify leading dimensions of trait covariation (correspondence analysis), quantify climatic and phylogenetic contributions (canonical correspondence analysis with variation partitioning) and characterise co-occurring trait syndromes (k-means clustering) and their climatic preferences.Three axes accounted for >20% of trait variation in both evergreen and deciduous species. Moisture index, precipitation seasonality and growing-season temperature explained 8%-10% of trait variation; family 15%-32%. Microphyll or larger, mid- to dark green leaves with drip tips in wetter climates contrasted with nanophyll or smaller glaucous leaves without drip tips in drier climates. Thick, entire leaves in less seasonal climates contrasted with thin, marginal dissected, aromatic and involute/revolute leaves in more seasonal climates. Thick, involute, hairy leaves in colder climates contrasted with thin leaves with marked surface structures (surface patterning) in warmer climates. Distinctive trait clusters were linked to the driest and most seasonal climates, for example the clustering of picophyll, fleshy and succulent leaves in the driest climates and leptophyll, linear, dissected, revolute or involute and aromatic leaves in regions with highly seasonal rainfall. Several trait clusters co-occurred in wetter climates, including clusters characterised by microphyll, moderately thick, patent and entire leaves or notophyll, waxy, dark green leaves. Synthesis. The plastic response of size, shape, colour and other leaf morphological traits to climate is muted, thus their apparent shift along climate gradients reflects plant adaptations to environment at a community level as determined by species replacement. Information on leaf morphological traits, widely available in floras, could be used to strengthen predictive models of species distribution and vegetation function.

4.
New Phytol ; 215(1): 27-37, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28295373

RESUMO

Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual roots to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.


Assuntos
Ecossistema , Raízes de Plantas/fisiologia , Botânica/métodos , Botânica/tendências , Modelos Biológicos , Micorrizas , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia
5.
G3 (Bethesda) ; 6(11): 3561-3570, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27613751

RESUMO

The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.

6.
New Phytol ; 211(4): 1159-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27174359

RESUMO

Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework.


Assuntos
Raízes de Plantas/fisiologia , Característica Quantitativa Herdável , Árvores/fisiologia , Micorrizas/fisiologia , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA