Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evolution ; 78(8): 1405-1425, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38745524

RESUMO

Estimating how traits evolved and impacted diversification across the tree of life represents a critical topic in ecology and evolution. Although there has been considerable research in comparative biology, large parts of the tree of life remain underexplored. Sharks are an iconic clade of marine vertebrates, and key components of marine ecosystems since the early Mesozoic. However, few studies have addressed how traits evolved or whether they impacted their extant diversity patterns. Our study aimed to fill this gap by reconstructing the largest time-calibrated species-level phylogeny of sharks and compiling an exhaustive database for ecological (diet, habitat) and biological (reproduction, maximum body length) traits. Using state-of-the-art models of evolution and diversification, we outlined the major character shifts and modes of trait evolution across shark species. We found support for sequential models of trait evolution and estimated a small to medium-sized lecithotrophic and coastal-dwelling most recent common ancestor for extant sharks. However, our exhaustive hidden traits analyses do not support trait-dependent diversification for any examined traits, challenging previous works. This suggests that the role of traits in shaping sharks' diversification dynamics might have been previously overestimated and should motivate future macroevolutionary studies to investigate other drivers of diversification in this clade.


Assuntos
Evolução Biológica , Filogenia , Tubarões , Tubarões/genética , Tubarões/fisiologia , Animais , Ecossistema , Tamanho Corporal , Características de História de Vida , Dieta
2.
Evolution ; 77(3): 670-681, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638071

RESUMO

The application of state-dependent speciation and extinction models to phylogenetic trees has shown an important role for traits in diversification. However, this role remains comparatively unexplored on islands, which can include multiple independent clades resulting from different colonization events. To explore whether assuming no dependence on traits leads to bias in inference on island dynamics, we extend an island biodiversity model, DAISIE (Dynamic Assembly of Islands through Speciation, Immigration, and Extinction) to include trait-dependent diversification simulations, and evaluate the robustness of the inference model which ignores this trait-dependence. Our results indicate that when the differences between colonization, extinction, and speciation rates between trait states are moderate, the model shows negligible error for a variety of island diversity metrics, suggesting that island diversity dynamics can be accurately estimated without the need to explicitly model trait dependence. We conclude that for many biologically realistic scenarios with trait-dependent diversification and colonization, this simple trait-less inference model is informative and robust to trait effects on colonization, speciation, and extinction. Nonetheless, our new simulation model may provide a useful tool for studying patterns of trait variation.


Assuntos
Biodiversidade , Modelos Biológicos , Filogenia , Fenótipo , Simulação por Computador , Especiação Genética
3.
Glob Ecol Biogeogr ; 31(9): 1784-1793, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246452

RESUMO

Aim: Urbanization exposes species to novel ecological conditions. Some species thrive in urban areas, whereas many others are excluded from these human-made environments. Previous analyses suggest that the ability to cope with rapid environmental change is associated with long-term patterns of diversification, but whether the suite of traits associated with the ability to colonize urban environments is linked to this process remains poorly understood. Location: World. Time period: Current. Major taxa studied: Passerine birds. Methods: We applied macroevolutionary models to a large dataset of passerine birds to compare the evolutionary history of urban-tolerant species with that of urban-avoidant species. Specifically, we examined models of state-dependent speciation and extinction to assess the macroevolution of urban tolerance as a binary trait, in addition to models of quantitative trait-dependent diversification based on relative urban abundance. We also ran simulation-based model assessments to explore potential sources of bias. Results: We provide evidence that historically, species with traits promoting urban colonization have undergone faster diversification than urban-avoidant species, indicating that urbanization favours clades with a historical tendency towards rapid speciation or reduced extinction. In addition, we find that past transitions towards states that currently impede urban colonization by passerines have been more frequent than in the opposite direction. Furthermore, we find a portion of urban-avoidant passerines to be recent and to undergo fast diversification. All highly supported models give this result consistently. Main conclusions: Urbanization is mainly associated with the loss of lineages that are inherently more vulnerable to extinction over deep time, whereas cities tend to be colonized by less vulnerable lineages, for which urbanization might be neutral or positive in terms of longer-term diversification. Urban avoidance is associated with high rates of recent diversification for some clades occurring in regions with relatively intact natural ecosystems and low current levels of urbanization.

4.
Am J Bot ; 109(2): 272-290, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34730230

RESUMO

PREMISE: Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS: A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS: Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS: Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.


Assuntos
Crassulaceae , Adaptação Fisiológica , Evolução Biológica , Ecossistema , Filogenia , Plastídeos/genética
5.
Evolution ; 74(6): 1155-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333393

RESUMO

Although evolutionary theory predicts an association between the evolution of elaborate ornamentation and speciation, empirical evidence for links between speciation and ornament evolution has been mixed. In birds, the evolution of increasingly complex and colorful plumage may promote speciation by introducing prezygotic mating barriers. However, overall changes in color complexity, including both increases and decreases, may also promote speciation by altering the sexual signals that mediate reproductive choices. Here, we examine the relationship between complex plumage and speciation rates in the largest family of songbirds, the tanagers (Thraupidae). First, we test whether species with more complex plumage coloration are associated with higher speciation rates and find no correlation. We then test whether rates of male or female plumage color complexity evolution are correlated with speciation rates. We find that elevated rates of plumage complexity evolution are associated with higher speciation rates, regardless of sex and whether species are evolving more complex or less complex ornamentation. These results extend to whole-plumage color complexity and regions important in signaling (crown and throat) but not nonsignaling regions (back and wingtip). Our results suggest that the extent of change in plumage traits, rather than overall values of plumage complexity, may play a role in speciation.


Assuntos
Especiação Genética , Pigmentação/genética , Seleção Sexual , Aves Canoras/genética , Animais , Plumas , Feminino , Masculino , Filogenia
6.
Mol Phylogenet Evol ; 133: 67-81, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594734

RESUMO

Tribe Euterpeae is an economically and ecologically important group of Neotropical palms (Arecaceae). Some species are hyperdominant in the Neotropics, and many constitute a good source of revenue. To reconstruct the biogeographical history and diversification of the Euterpeae, we inferred a robust dated molecular phylogenetic hypothesis including 82% of the species sequenced for five DNA regions (trnD-trnT, CISP4, WRKY6, RPB2, and PHYB). Ancestral range was estimated using all models available in BioGeoBEARS and Binary State Speciation and Extinction analysis was used to evaluate the association of biome and inflorescence type with diversification rates. All intergeneric relationships were resolved providing insight on the taxonomic controversy of Jessenia, Euterpe and Prestoea. Three widely distributed Neotropical species were non-monophyletic, inviting a revision of species circumscriptions. The Euterpeae started its diversification in the mid Eocene (40 Mya), with most species-level divergence events occurring in the last 10 million years. Four colonization events from Central to South America were inferred. Different diversification rates were associated with biomes. Lowland rainforest was inferred as the ancestral biome of Euterpeae, attesting to the importance of lowland adapted lineages on the assembly of the montane flora. The two-fold higher speciation rate for montane taxa (compared with lowland rainforest taxa) was contemporaneous to the Andean orogenic uplift. The specialized beetle pollination of Oenocarpus with its hippuriform (horsetail shape) inflorescence was not associated with diversification rates in Euterpeae.


Assuntos
Arecaceae/classificação , Arecaceae/genética , América Central , Ecossistema , Filogenia , Filogeografia , Floresta Úmida , América do Sul
7.
Ecol Evol ; 8(8): 3965-3982, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721272

RESUMO

The Neotropical region is the most biodiverse on Earth, in a large part due to the highly diverse tropical Andean biota. The Andes are a potentially important driver of diversification within the mountains and for neighboring regions. We compared the role of the Andes in diversification among three subtribes of Ithomiini butterflies endemic to the Neotropics, Dircennina, Oleriina, and Godyridina. The diversification patterns of Godyridina have been studied previously. Here, we generate the first time-calibrated phylogeny for the largest ithomiine subtribe, Dircennina, and we reanalyze a published phylogeny of Oleriina to test different biogeographic scenarios involving the Andes within an identical framework. We found common diversification patterns across the three subtribes, as well as major differences. In Dircennina and Oleriina, our results reveal a congruent pattern of diversification related to the Andes with an Andean origin, which contrasts with the Amazonian origin and multiple Andean colonizations of Godyridina. In each of the three subtribes, a clade diversified in the Northern Andes at a faster rate. Diversification within Amazonia occurred in Oleriina and Godyridina, while virtually no speciation occurred in Dircennina in this region. Dircennina was therefore characterized by higher diversification rates within the Andes compared to non-Andean regions, while in Oleriina and Godyridina, we found no difference between these regions. Our results and discussion highlight the importance of comparative approaches in biogeographic studies.

8.
Am Nat ; 190(5): 631-648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053360

RESUMO

The ecological traits of organisms may predict their genetic diversity and population genetic structure and mediate the action of evolutionary processes important for speciation and adaptation. Making these ecological-evolutionary links is difficult because it requires comparable genetic estimates from many species with differing ecologies. In Amazonian birds, habitat association is an important component of ecological diversity. Here, we examine the link between habitat association and genetic parameters using 20 pairs of closely related Amazonian bird species in which one member of the pair occurs primarily in forest edge and floodplains and the other occurs in upland forest interior. We use standardized geographic sampling and data from 2,416 genomic markers to estimate genetic diversity, population genetic structure, and statistics reflecting demographic and evolutionary processes. We find that species of upland forest have greater genetic diversity and divergence across the landscape as well as signatures of older histories and less gene flow than floodplain species. Our results reveal that species ecology in the form of habitat association is an important predictor of genetic diversity and population divergence and suggest that differences in diversity between floodplain and upland avifaunas in the Amazon may be driven by differences in the demographic and evolutionary processes at work in the two habitats.


Assuntos
Evolução Biológica , Aves/genética , Ecossistema , Variação Genética , Animais , Florestas , Especiação Genética , América do Sul
9.
Proc Natl Acad Sci U S A ; 114(24): 6328-6333, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559330

RESUMO

An implicit assumption of speciation biology is that population differentiation is an important stage of evolutionary diversification, but its significance as a rate-limiting control on phylogenetic speciation dynamics remains largely untested. If population differentiation within a species is related to its speciation rate over evolutionary time, the causes of differentiation could also be driving dynamics of organismal diversity across time and space. Alternatively, geographic variants might be short-lived entities with rates of formation that are unlinked to speciation rates, in which case the causes of differentiation would have only ephemeral impacts. By pairing population genetics datasets from 173 New World bird species (>17,000 individuals) with phylogenetic estimates of speciation rate, we show that the population differentiation rates within species are positively correlated with their speciation rates over long timescales. Although population differentiation rate explains relatively little of the variation in speciation rate among lineages, the positive relationship between differentiation rate and speciation rate is robust to species-delimitation schemes and to alternative measures of both rates. Population differentiation occurs at least three times faster than speciation, which suggests that most populations are ephemeral. Speciation and population differentiation rates are more tightly linked in tropical species than in temperate species, consistent with a history of more stable diversification dynamics through time in the Tropics. Overall, our results suggest that the processes responsible for population differentiation are tied to those that underlie broad-scale patterns of diversity.


Assuntos
Aves/genética , Especiação Genética , Animais , Aves/classificação , Evolução Molecular , Genes Mitocondriais , Genética Populacional , Filogenia , Filogeografia , Dinâmica Populacional , Fatores de Tempo , Clima Tropical
10.
Proc Biol Sci ; 283(1845)2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28003450

RESUMO

Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.


Assuntos
Especiação Genética , Lagartos/anatomia & histologia , Pescoço/anatomia & histologia , Pele/anatomia & histologia , Animais , Geografia , Lagartos/classificação , Fenótipo , Filogenia
11.
Mol Ecol ; 25(22): 5765-5784, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27718282

RESUMO

Understanding why species richness peaks along the Andes is a fundamental question in the study of Neotropical biodiversity. Several biogeographic and diversification scenarios have been proposed in the literature, but there is confusion about the processes underlying each scenario, and assessing their relative contribution is not straightforward. Here, we propose to refine these scenarios into a framework which evaluates four evolutionary mechanisms: higher speciation rate in the Andes, lower extinction rates in the Andes, older colonization times and higher colonization rates of the Andes from adjacent areas. We apply this framework to a species-rich subtribe of Neotropical butterflies whose diversity peaks in the Andes, the Godyridina (Nymphalidae: Ithomiini). We generated a time-calibrated phylogeny of the Godyridina and fitted time-dependent diversification models. Using trait-dependent diversification models and ancestral state reconstruction methods we then compared different biogeographic scenarios. We found strong evidence that the rates of colonization into the Andes were higher than the other way round. Those colonizations and the subsequent local diversification at equal rates in the Andes and in non-Andean regions mechanically increased the species richness of Andean regions compared to that of non-Andean regions ('species-attractor' hypothesis). We also found support for increasing speciation rates associated with Andean lineages. Our work highlights the importance of the Andean slopes in repeatedly attracting non-Andean lineages, most likely as a result of the diversity of habitats and/or host plants. Applying this analytical framework to other clades will bring important insights into the evolutionary mechanisms underlying the most species-rich biodiversity hotspot on the planet.


Assuntos
Biodiversidade , Borboletas/genética , Especiação Genética , Filogenia , Animais , Ecossistema , América do Sul
12.
Methods Ecol Evol ; 7(6): 693-699, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499839

RESUMO

Phylogenetic comparative methods are becoming increasingly popular for investigating evolutionary patterns and processes. However, these methods are not infallible - they suffer from biases and make assumptions like all other statistical methods.Unfortunately, although these limitations are generally well known in the phylogenetic comparative methods community, they are often inadequately assessed in empirical studies leading to misinterpreted results and poor model fits. Here, we explore reasons for the communication gap dividing those developing new methods and those using them.We suggest that some important pieces of information are missing from the literature and that others are difficult to extract from long, technical papers. We also highlight problems with users jumping straight into software implementations of methods (e.g. in r) that may lack documentation on biases and assumptions that are mentioned in the original papers.To help solve these problems, we make a number of suggestions including providing blog posts or videos to explain new methods in less technical terms, encouraging reproducibility and code sharing, making wiki-style pages summarising the literature on popular methods, more careful consideration and testing of whether a method is appropriate for a given question/data set, increased collaboration, and a shift from publishing purely novel methods to publishing improvements to existing methods and ways of detecting biases or testing model fit. Many of these points are applicable across methods in ecology and evolution, not just phylogenetic comparative methods.

13.
Evolution ; 70(3): 513-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880617

RESUMO

Species selection resulting from trait-dependent speciation and extinction is increasingly recognized as an important mechanism of phenotypic macroevolution. However, the recent bloom in statistical methods quantifying this process faces a scarcity of dynamical theory for their interpretation, notably regarding the relative contributions of deterministic versus stochastic evolutionary forces. I use simple diffusion approximations of birth-death processes to investigate how the expected and random components of macroevolutionary change depend on phenotype-dependent speciation and extinction rates, as can be estimated empirically. I show that the species selection coefficient for a binary trait, and selection differential for a quantitative trait, depend not only on differences in net diversification rates (speciation minus extinction), but also on differences in species turnover rates (speciation plus extinction), especially in small clades. The randomness in speciation and extinction events also produces a species-level equivalent to random genetic drift, which is stronger for higher turnover rates. I then show how microevolutionary processes including mutation, organismic selection, and random genetic drift cause state transitions at the species level, allowing comparison of evolutionary forces across levels. A key parameter that would be needed to apply this theory is the distribution and rate of origination of new optimum phenotypes along a phylogeny.


Assuntos
Evolução Biológica , Modelos Genéticos , Animais , Deriva Genética , Especiação Genética , Fenótipo , Plantas , Seleção Genética
14.
Ann Bot ; 112(9): 1705-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24142920

RESUMO

BACKGROUND AND AIMS: The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ~30 species and subspecies with highly specialized corollas. METHODS: A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. KEY RESULTS: A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. CONCLUSIONS: The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes.


Assuntos
Evolução Biológica , Flores/anatomia & histologia , Linaria/genética , Polinização , Animais , Linaria/anatomia & histologia , Néctar de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA