Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Geroscience ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992335

RESUMO

The escalating global burden of age-related neurodegenerative diseases and associated healthcare costs necessitates innovative interventions to stabilize or enhance cognitive functions. Deficits in working memory (WM) are linked to alterations in prefrontal theta-gamma cross-frequency coupling. Low-intensity transcranial alternating current stimulation (tACS) has emerged as a non-invasive, low-cost approach capable of modulating ongoing oscillations in targeted brain areas through entrainment. This study investigates the impact of multi-session peak-coupled theta-gamma cross-frequency tACS administered to the dorsolateral prefrontal cortex (DLPFC) on WM performance in older adults. In a randomized, sham-controlled, triple-blinded design, 77 participants underwent 16 stimulation sessions over six weeks while performing n-back tasks. Signal detection measures revealed increased 2-back sensitivity and robust modulations of response bias, indicating improved WM and decision-making adaptations, respectively. No effects were observed in the 1-back condition, emphasizing dependencies on cognitive load. Repeated tACS reinforces behavioral changes, indicated by increasing effect sizes. This study supports prior research correlating prefrontal theta-gamma coupling with WM processes and provides unique insights into the neurocognitive benefits of repeated tACS intervention. The well-tolerated and highly effective multi-session tACS intervention among the elderly underscores its therapeutic potential in vulnerable populations.

2.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854074

RESUMO

The information transfer necessary for successful memory retrieval is believed to be mediated by theta and gamma oscillations. These oscillations have been linked to memory processes in electrophysiological studies, which were correlational in nature. In the current study, we used transcranial alternating current stimulation (tACS) to externally modulate brain oscillations to examine its direct effects on memory performance. Participants received sham, theta (4 Hz), and gamma (50 Hz) tACS over frontoparietal regions while retrieving information in a source memory paradigm. Linear regression models were used to investigate the direct effects of oscillatory non-invasive brain stimulation (NIBS) on memory accuracy and confidence. Our results indicate that both theta and gamma tACS altered memory confidence. Specifically, theta tACS seemed to lower the threshold for confidence in retrieved information, while gamma tACS appeared to alter the memory confidence bias. Furthermore, the individual differences in tACS effects could be predicted from electroencephalogram (EEG) measures recorded prior to stimulation, suggesting that EEG could be a useful tool for predicting individual variability in the efficacy of NIBS.

3.
Neurosci Lett ; 835: 137849, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38825146

RESUMO

INTRODUCTION: Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can effectively alleviate anxiety symptoms. This study aimed to explore the neural mechanisms that drive the therapeutic benefits. METHODS: We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after a tACS treatment session. tACS was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8 (10-10 EEG convention). With eLORETA, we transformed the scalp signals into the current source density in the cortex. We then assessed the differences between post- and pre-treatment brain maps across multiple spectra (delta to low gamma) with non-parametric statistics. RESULTS: We observed a trend of heightened power in alpha and reduced power in mid-to-high beta and low gamma, in accord with the EEG markers of anxiolytic effects reported in previous studies. Additionally, we observed a consistent trend of de-synchronization at the stimulating sites across spectra. CONCLUSION: tACS 5-Hz over the right hemisphere demonstrated EEG markers of anxiety reduction. The after-effects of tACS on the brain are intricate and cannot be explained solely by the widely circulated entrainment theory. Rather, our results support the involvement of plasticity mechanisms in the offline effects of tACS.


Assuntos
Eletroencefalografia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Transtornos de Ansiedade/terapia , Transtornos de Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Pessoa de Meia-Idade , Lateralidade Funcional/fisiologia
4.
J Affect Disord ; 360: 156-162, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38821364

RESUMO

INTRODUCTION: One of the most common applications of transcranial electrical stimulation (tES) at low current intensity is to induce a relaxed state or reduce anxiety. With technical advancement, different waveforms, montages, and parameters can be incorporated into the treatment regimen. We developed a novel protocol to treat individuals with anxiety disorders by transcranial alternating current stimulation (tACS). METHODS: A total of 27 individuals with anxiety disorders underwent tACS treatment for 12 sessions, with each session lasting 25 min. tACS at 5 Hz was applied to F4 (1.0 mA), P4 (1.0 mA), and T8 (2.0 mA) EEG lead positions (tripod), with sinewave oscillation between T8 and F4/P4. We evaluated the primary and secondary outcomes using the Beck Anxiety Inventory (BAI) and neuropsychological assessments. RESULTS: Of the 27 patients, 19 (70.4 %) experienced a reduction in symptom severity >50 %, with an average reduction of BAI 58.5 %. All reported side effects were mild, with itching or tingling being the most common complaint. No significant differences were noted in attention, linguistic working memory, visuospatial working memory, or long-term memory in neuropsychological assessments. CONCLUSION: The results suggest the potential of this novel tripod tACS design as a rapid anxiety alleviator and the importance of a clinical trial to verify its efficacy.


Assuntos
Transtornos de Ansiedade , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Feminino , Adulto , Masculino , Transtornos de Ansiedade/terapia , Pessoa de Meia-Idade , Resultado do Tratamento , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Adulto Jovem , Ansiedade/terapia , Ansiedade/psicologia
5.
J Inherit Metab Dis ; 47(4): 703-715, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38659221

RESUMO

Patients with classic galactosemia (CG), an inborn error of galactose metabolism, suffer from impairments in cognition, including language processing. Potential causes are atypical brain oscillations. Recent electroencephalogram (EEG) showed differences in the P300 event-related-potential (ERP) and alterations in the alpha/theta-range during speech planning. This study investigated whether transcranial alternating current stimulation (tACS) at theta-frequency compared to sham can cause a normalization of the ERP post stimulation and improves language performance. Eleven CG patients and fourteen healthy controls participated in two tACS-sessions (theta 6.5 Hz/sham). They were engaged in an active language task, describing animated scenes at three moments, that is, pre/during/post stimulation. Pre and post stimulation, behavior (naming accuracy, voice-onset-times; VOT) and mean-amplitudes of ERP were compared, by means of a P300 time-window analysis and cluster-based-permutation testing during speech planning. The results showed that theta stimulation, not sham, significantly reduced naming error-percentage in patients, not in controls. Theta did not systematically speed up naming beyond a general learning effect, which was larger for the patients. The EEG analysis revealed a significant pre-post stimulation effect (P300/late positivity), in patients and during theta stimulation only. In conclusion, theta-tACS improved accuracy in language performance in CG patients compared to controls and altered the P300 and late positive ERP-amplitude, suggesting a lasting effect on neural oscillation and behavior.


Assuntos
Eletroencefalografia , Galactosemias , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Estimulação Transcraniana por Corrente Contínua/métodos , Galactosemias/fisiopatologia , Galactosemias/terapia , Adulto Jovem , Ritmo Teta/fisiologia , Idioma , Potenciais Evocados P300/fisiologia , Fala/fisiologia , Pessoa de Meia-Idade , Estudos de Casos e Controles
6.
J Integr Neurosci ; 23(3): 59, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538231

RESUMO

BACKGROUND: Transcranial random noise stimulation (tRNS) is a form of noninvasive transcranial electrical stimulation that applies alternating current in various randomized frequencies to the cortex, thereby improving cognitive functioning in multiple domains. However, the precise mechanism of tRNS, as well as its impact on human electroencephalography (EEG), remains unclear. This is partly because most studies have used tRNS in conjunction with a cognitive task, making it difficult to tease apart whether the observed changes in EEG are a result of tRNS, the cognitive task, or their interaction. METHODS: Forty-nine healthy individuals participated in this study and were randomly assigned to active tRNS (n = 24) and sham (n = 25) groups. tRNS was delivered for 20 minutes over Fp1/Fp2 and Oz. Resting-state EEG data were collected before and after either tRNS or sham stimulation. RESULTS: Cluster-based permutation tests using FieldTrip revealed no frequency-specific effect of tRNS on resting-state EEG data across four frequency bands (theta, alpha, beta, gamma). CONCLUSIONS: These observations suggest that tRNS itself does not target or alter specific EEG frequencies. Rather, tRNS most likely interacts with the cognitive task/activity at hand to produce an observable difference in post-tRNS EEG. Positive tRNS-EEG findings from previous studies are also likely to have resulted from the interactive and cognitive activity-dependent nature of tRNS.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroencefalografia , Cognição/fisiologia , Córtex Cerebral , Descanso
7.
Sci Rep ; 14(1): 4955, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418511

RESUMO

The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Qualidade de Vida , Aprendizagem/fisiologia , Cognição/fisiologia , Encéfalo
8.
J Neural Eng ; 21(1)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382101

RESUMO

Objective.Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that directly interacts with ongoing brain oscillations in a frequency-dependent manner. However, it remains largely unclear how the cellular effects of tACS vary between cell types and subcellular elements.Approach.In this study, we use a set of morphologically realistic models of neocortical neurons to simulate the cellular response to uniform oscillating electric fields (EFs). We systematically characterize the membrane polarization in the soma, axons, and dendrites with varying field directions, intensities, and frequencies.Main results.Pyramidal cells are more sensitive to axial EF that is roughly parallel to the cortical column, while interneurons are sensitive to axial EF and transverse EF that is tangent to the cortical surface. Membrane polarization in each subcellular element increases linearly with EF intensity, and its slope, i.e. polarization length, highly depends on the stimulation frequency. At each frequency, pyramidal cells are more polarized than interneurons. Axons usually experience the highest polarization, followed by the dendrites and soma. Moreover, a visible frequency resonance presents in the apical dendrites of pyramidal cells, while the other subcellular elements primarily exhibit low-pass filtering properties. In contrast, each subcellular element of interneurons exhibits complex frequency-dependent polarization. Polarization phase in each subcellular element of cortical neurons lags that of field and exhibits high-pass filtering properties. These results demonstrate that the membrane polarization is not only frequency-dependent, but also cell type- and subcellular element-specific. Through relating effective length and ion mechanism with polarization, we emphasize the crucial role of cell morphology and biophysics in determining the frequency-dependent membrane polarization.Significance.Our findings highlight the diverse polarization patterns across cell types as well as subcellular elements, which provide some insights into the tACS cellular effects and should be considered when understanding the neural spiking activity by tACS.


Assuntos
Neocórtex , Estimulação Transcraniana por Corrente Contínua , Células Piramidais/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia
9.
Front Neurosci ; 17: 1288765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928733

RESUMO

Fibromyalgia, a common and enduring pain disorder, ranks as the second most prevalent rheumatic disease after osteoarthritis. Recent years have witnessed successful treatment using non-invasive brain stimulation. Transcranial magnetic stimulation, transcranial direct current stimulation, and electroconvulsion therapy have shown promise in treating chronic pain. This article reviews the literature concerning non-invasive stimulation for fibromyalgia treatment, its mechanisms, and establishes a scientific basis for rehabilitation, and discusses the future directions for research and development prospects of these techniques are discussed.

10.
Soc Cogn Affect Neurosci ; 18(1)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930808

RESUMO

The right temporo-parietal junction (rTPJ) and the right lateral prefrontal cortex (rLPFC) are known to play prominent roles in human social behaviour. However, it remains unknown which brain rhythms in these regions contribute to trading-off fairness norms against selfish interests as well as whether the influence of these oscillations depends on whether fairness violations are advantageous or disadvantageous for a decision maker. To answer these questions, we used non-invasive transcranial alternating current stimulation (tACS) to determine which brain rhythms in rTPJ and rLPFC are causally involved in moderating aversion to advantageous and disadvantageous inequity. Our results show that theta oscillations in rTPJ strengthen the aversion to unequal splits, which is statistically mediated by the rTPJ's role for perspective taking. In contrast, theta tACS over rLPFC enhanced the preference for outcome-maximizing unequal choices more strongly for disadvantageous compared to advantageous outcome distributions. Taken together, we provide evidence that neural oscillations in rTPJ and rLPFC have distinct causal roles in implementing inequity aversion, which can be explained by their involvement in distinct psychological processes.


Assuntos
Comportamento Social , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
11.
Brain Stimul ; 16(6): 1646-1652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37949295

RESUMO

BACKGROUND: Studies using transcranial alternating current stimulation (tACS), a type of non-invasive brain stimulation, have demonstrated a relationship between the positive versus negative phase of both alpha and delta/theta oscillations with variable near-threshold auditory perception. These findings have not been directly compared before. Furthermore, as perception was better in the positive versus negative phase of two different frequencies, it is unclear whether changes in polarity (independent of a specific frequency) could also modulate auditory perception. OBJECTIVE: We investigated whether auditory perception depends on the phase of alpha, delta/theta, or polarity alone. METHODS: We stimulated participants with alpha, delta, and positive and negative direct current (DC) over temporal and central scalp sites while they identified near-threshold tones-in-noise. A Sham condition without tACS served as a control condition. A repeated-measures analysis of variance was used to assess differences in proportions of hits between conditions and polarities. Permutation-based circular-logistic regressions were used to assess the relationship between circular-predictors and single-trial behavioral responses. An exploratory analysis compared the full circular-logistic regression model to the intercept-only model. RESULTS: Overall, there were a greater proportion of hits in the Alpha condition in comparison to Delta, DC, and Sham conditions. We also found an interaction between polarity and stimulation condition; post-hoc analyses revealed a greater proportion of hits in the positive versus negative phase of Alpha tACS. In contrast, no significant differences were found in the Delta, DC, or Sham conditions. The permutation-based circular-logistic regressions did not reveal a statistically significant difference between the obtained RMS of the sine and cosine coefficients and the mean of the surrogate distribution for any of the conditions. However, our exploratory analysis revealed that circular-predictors explained the behavioral data significantly better than an intercept-only model for the Alpha condition, and not the other three conditions. CONCLUSION: These findings suggest that alpha tACS, and not delta nor polarity alone, modulates auditory perception.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Percepção Auditiva/fisiologia
12.
Brain Sci ; 13(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38002544

RESUMO

Research has shown the effectiveness of motor imagery in patient motor rehabilitation. Transcranial electrical stimulation has also demonstrated to improve patient motor and non-motor performance. However, mixed findings from motor imagery studies that involved transcranial electrical stimulation suggest that current experimental protocols can be further improved towards a unified design for consistent and effective results. This paper aims to review, with some clinical and neuroscientific findings from literature as support, studies of motor imagery coupled with different types of transcranial electrical stimulation and their experiments onhealthy and patient subjects. This review also includes the cognitive domains of working memory, attention, and fatigue, which are important for designing consistent and effective therapy protocols. Finally, we propose a theoretical all-inclusive framework that synergizes the three cognitive domains with motor imagery and transcranial electrical stimulation for patient rehabilitation, which holds promise of benefiting patients suffering from neuromuscular and cognitive disorders.

16.
Front Hum Neurosci ; 17: 1197393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731669

RESUMO

Non-pharmacological treatment is essential for patients with major depressive disorder (MDD) that is medication resistant or who are unable to take medications. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that manipulates neural oscillations. In recent years, tACS has attracted substantial attention for its potential as an MDD treatment. This review summarizes the latest advances in tACS treatment for MDD and outlines future directions for promoting its clinical application. We first introduce the neurophysiological mechanism of tACS and its novel developments. In particular, two well-validated tACS techniques have high application potential: high-definition tACS targeting local brain oscillations and bifocal tACS modulating interarea functional connectivity. Accordingly, we summarize the underlying mechanisms of tACS modulation for MDD. We sort out the local oscillation abnormalities within the reward network and the interarea oscillatory synchronizations among multiple MDD-related networks in MDD patients, which provide potential modulation targets of tACS interventions. Furthermore, we review the latest clinical studies on tACS treatment for MDD, which were based on different modulation mechanisms and reported alleviations in MDD symptoms. Finally, we discuss the main challenges of current tACS treatments for MDD and outline future directions to improve intervention target selection, tACS implementation, and clinical validations.

17.
Front Neurosci ; 17: 1228326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662103

RESUMO

This study focused on the use of Non-Invasive Transcranial Alternating Current Stimulation (NITACS) to induce and map phosphenes (spark-like percepts in the visual field) in healthy individuals. The study found optimal stimulation parameters to induce reliable phosphenes without skin irritation or pain. The results suggest NITACS can be used as a tool to investigate the relationship between facial stimulation location and phosphene localization within the field of vision (FOV) and raise questions about the origin of phosphenes generated through NITACS. The outcomes of this study could serve as a source of inspiration for creating non-invasive visual aids in the future.

18.
Neurophysiol Clin ; 53(5): 102898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659136

RESUMO

BACKGROUND: The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are key brain regions involved in risky decision making, affected in individuals with attention deficit hyperactivity disorder (ADHD). This study aims to examine how entrainment of these areas impacts the process and outcome of risky decision making in children with ADHD. METHODS: Eighteen children with ADHD performed the balloon analogue risk-taking task (BART) during five different sessions of tACS (1.5 mA, 6 Hz), separated by one-week intervals, via (1) two channels with synchronized stimulation over the left dlPFC and right vmPFC, (2) the same electrode placement with anti-phase stimulation, (3) stimulation over the left dlPFC only, (4) stimulation over right vmPFC only, and (5) sham stimulation. Four-parameter and constant-sensitivity models were used to model the data. RESULTS: The study showed that synchronized stimulation was associated with a reduction in positive prior belief, risk propensity, and deterministic selection. Desynchronized stimulation was associated with accelerated learning from initial selections. Isolated stimulation of the dlPFC leads to riskier decision enhanced learning updates and risk propensity, whereas isolated stimulation of the vmPFC facilitated faster learning and increased probabilistic selection. CONCLUSION: The results highlight the important roles of the dlPFC and vmPFC and their communication in decision making, showcasing their impact on various aspects of the decision-making process. The findings provide valuable insights into the complex interplay between cognitive and emotional factors in shaping our choices.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulação Transcraniana por Corrente Contínua , Humanos , Criança , Estimulação Transcraniana por Corrente Contínua/métodos , Tomada de Decisões/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Assunção de Riscos , Córtex Pré-Frontal/fisiologia , Cognição
19.
Artigo em Inglês | MEDLINE | ID: mdl-37682331

RESUMO

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.

20.
Neuroimage ; 280: 120331, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604295

RESUMO

Designing a transcranial electrical stimulation (tES) strategy requires considering multiple objectives, such as intensity in the target area, focality, stimulation depth, and avoidance zone. These objectives are often mutually exclusive. In this paper, we propose a general framework, called multi-objective optimization via evolutionary algorithm (MOVEA), which solves the non-convex optimization problem in designing tES strategies without a predefined direction. MOVEA enables simultaneous optimization of multiple targets through Pareto optimization, generating a Pareto front after a single run without manual weight adjustment and allowing easy expansion to more targets. This Pareto front consists of optimal solutions that meet various requirements while respecting trade-off relationships between conflicting objectives such as intensity and focality. MOVEA is versatile and suitable for both transcranial alternating current stimulation (tACS) and transcranial temporal interference stimulation (tTIS) based on high definition (HD) and two-pair systems. We comprehensively compared tACS and tTIS in terms of intensity, focality, and steerability for targets at different depths. Our findings reveal that tTIS enhances focality by reducing activated volume outside the target by 60%. HD-tTIS and HD-tDCS can achieve equivalent maximum intensities, surpassing those of two-pair tTIS, such as 0.51 V/m under HD-tACS/HD-tTIS and 0.42 V/m under two-pair tTIS for the motor area as a target. Analysis of variance in eight subjects highlights individual differences in both optimal stimulation policies and outcomes for tACS and tTIS, emphasizing the need for personalized stimulation protocols. These findings provide guidance for designing appropriate stimulation strategies for tACS and tTIS. MOVEA facilitates the optimization of tES based on specific objectives and constraints, advancing tTIS and tACS-based neuromodulation in understanding the causal relationship between brain regions and cognitive functions and treating diseases. The code for MOVEA is available at https://github.com/ncclabsustech/MOVEA.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo , Cognição , Algoritmos , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA