Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Alzheimers Dement ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392185

RESUMO

INTRODUCTION: Microglial responses are an integral part of Alzheimer's disease (AD) pathology and are associated with amyloid beta (Aß) deposition. This study aimed to investigate the effects of Aß and microglial responses on global cognitive impairment. METHODS: In this longitudinal study, 28 patients with mild cognitive impairment and 11 healthy controls underwent 11C-PK11195 and 11C-Pittsburgh compound B positron emission tomography (PET), structural magnetic resonance imaging scans, and global cognitive ratings at baseline and 2-year follow-up. Correlations between PET uptake and global cognition were assessed. Additionally, the mediation effect of the microglial response on the association between Aß load and global cognition was assessed. RESULTS: Aß load and the microglial response were both independently detrimental to global cognitive performance at baseline; however, at 2-year follow-up the association between Aß load and global cognitive ratings was partially mediated by the microglial response. DISCUSSION: As AD progresses, the associated microglial response partially mediates the detrimental effect of aggregated Aß on cognition. HIGHLIGHTS: This was a longitudinal study of amyloid beta (Aß), microglial responses, and global cognitive performance. Aß and microglial responses both affect cognition in early Alzheimer's disease. Microglial response partially mediates the effect of Aß on cognition in later stages.

2.
Molecules ; 29(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275061

RESUMO

The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.


Assuntos
Doenças Neuroinflamatórias , Receptores de GABA , Animais , Humanos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Isoquinolinas/química , Ligantes , Doenças Neuroinflamatórias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores de GABA/metabolismo
3.
Behav Brain Res ; 476: 115268, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322063

RESUMO

OBJECTIVE: Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6 J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30 minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS: (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION: Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.

4.
Acta Pharmacol Sin ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210042

RESUMO

Positron emission tomography (PET) targeting translocator protein 18 kDa (TSPO) can be used for the noninvasive detection of neuroinflammation. Improved in vivo stability of a TSPO tracer is beneficial for minimizing the potential confounding effects of radiometabolites. Deuteration represents an important strategy for improving the pharmacokinetics and stability of existing drug molecules in the plasma. This study developed a novel tracer via the deuteration of [18F]LW223 and evaluated its in vivo stability and specific binding in neuroinflammatory rodent models and nonhuman primate (NHP) brains. Compared with LW223, D2-LW223 exhibited improved binding affinity to TSPO. Compared with [18F]LW223, [18F]D2-LW223 has superior physicochemical properties and favorable brain kinetics, with enhanced metabolic stability and reduced defluorination. Preclinical investigations in rodent models of LPS-induced neuroinflammation and cerebral ischemia revealed specific [18F]D2-LW223 binding to TSPO in regions affected by neuroinflammation. Two-tissue compartment model analyses provided excellent model fits and allowed the quantitative mapping of TSPO across the NHP brain. These results indicate that [18F]D2-LW223 holds significant promise for the precise quantification of TSPO expression in neuroinflammatory pathologies of the brain.

5.
Discov Med ; 36(187): 1600-1609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190375

RESUMO

BACKGROUND: Macrophages are activated in ventilator-induced lung injury (VILI), accompanied by macrophage pyroptosis. Remimazolam (Re) plays a role in inhibiting macrophage activation. In this study, we aimed to investigate the mechanism of Re in VILI. METHODS: A VILI model (20 mL/kg mechanical ventilation) was created using C57BL/6 mice. Alveolar macrophages were isolated from bronchoalveolar lavage fluid (BALF) and received mechanical stretching to simulate the mechanical ventilation in vitro. VILI model mice were treated with Re (16 mg/kg) to assess the alveolar structure, wet/dry (W/D) weight ratio, endothelial barrier antigen (EBA) permeability index, BALF protein content, inflammatory factors, macrophage pyroptosis, pyroptosis-related factors, and translocator protein (TSPO) level using a series of biological experiments. Whether Re alleviated macrophage pyroptosis by regulating TSPO was determined by rescue experiments. RESULTS: Re alleviated VILI, as evidenced by improvement of abnormal morphology of lung tissues during VILI and decreases in the lung W/D weight ratio, lung EBA permeability index, and BALF protein content. Re attenuated pulmonary inflammation and macrophage pyroptosis during VILI via down-regulation of inflammatory factors (myeloperoxidase, malondialchehyche, 8-hydroxy-2 deoxyguanosine, interleukin-6, tumor necrosis factor-α, macrophage inflammatory protein-2, interleukin-1ß, and interleukin-18), and pyroptosis factors (cleaved gasdermin D (GSDMD)/GSDMD value, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and caspase-1). Re activated TSPO in macrophages. TSPO overexpression rescued the cell stretch-inhibited macrophage viability and cell stretch-induced macrophage pyroptosis. CONCLUSION: Re alleviates VILI by activating TSPO to inhibit macrophage pyroptosis.


Assuntos
Camundongos Endogâmicos C57BL , Piroptose , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Piroptose/efeitos dos fármacos , Camundongos , Masculino , Receptores de GABA/metabolismo , Modelos Animais de Doenças , Líquido da Lavagem Broncoalveolar/química , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia
6.
Acta Neuropathol ; 148(1): 21, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150562

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.


Assuntos
Corpos de Inclusão Intranuclear , Microglia , Doenças Neurodegenerativas , Animais , Microglia/patologia , Microglia/metabolismo , Corpos de Inclusão Intranuclear/patologia , Corpos de Inclusão Intranuclear/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Camundongos , Camundongos Transgênicos , Expansão das Repetições de Trinucleotídeos/genética , Humanos , Masculino , Feminino
7.
Eur J Pharmacol ; 979: 176861, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068975

RESUMO

Bone cancer pain (BCP) is a complex clinical challenge, with current treatments often falling short of providing adequate relief. Remimazolam, a benzodiazepine receptor agonist recognized for its anxiolytic effects, has emerged as a potential agent in managing BCP. This study explores the analgesic properties of remimazolam and its interaction with the translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, in spinal astrocytes. In the context of BCP, previous research has indicated that TSPO expression in spinal astrocytes may serve a protective regulatory function in neuropathic pain models. Building on this, the BCP mice received various doses of remimazolam on the 15th day post-inoculation, and pain behavior was assessed over time. The results showed that BCP induced an upregulation of TSPO and astrocyte activation in the spinal dorsal horn, alongside increased extracellular signal-regulated kinase (ERK) signaling and inflammatory cytokine expression. Remimazolam administration resulted in a dose-dependent reduction of pain behaviors, which corresponded with a decrease in both ERK pathway activation and inflammatory factor expression. This suggests that remimazolam's analgesic effects are mediated through its action as a TSPO agonist, leading to the attenuation of neuroinflammation and pain signaling pathways. Importantly, the analgesic effects of remimazolam were reversed by the TSPO antagonist PK11195, underscoring the pivotal role of TSPO in the drug's mechanism of action. This reversal also reinstated the heightened levels of ERK activity and inflammatory mediators, further confirming the involvement of TSPO in the modulation of these pain-related processes. These findings open new avenues for the therapeutic management of bone cancer pain, positioning remimazolam as a promising candidate for further investigation and development.


Assuntos
Astrócitos , Neoplasias Ósseas , Dor do Câncer , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/tratamento farmacológico , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Feminino , Receptores de GABA/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
8.
Int J Biol Macromol ; 276(Pt 2): 134020, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038584

RESUMO

Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.


Assuntos
Exoesqueleto , Crassostrea , Pigmentação , Protoporfirinas , Animais , Protoporfirinas/metabolismo , Crassostrea/metabolismo , Crassostrea/genética , Exoesqueleto/metabolismo , Cor
9.
Exp Ther Med ; 28(3): 349, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39071907

RESUMO

Ischemic heart disease (IHD) remains a leading cause of mortalities worldwide, necessitating timely reperfusion to reduce acute mortality. Paradoxically, reperfusion can induce myocardial ischemia/reperfusion (I/R) injury, which is primarily characterized by mitochondrial dysfunction. Translocator protein (TSPO) participates in multiple cellular events; however, its role in IHD, especially in the process of myocardial I/R injury, has not been well determined. The aim of the present study was to investigate the functional role of TSPO in myocardial I/R injury and dissect the concomitant cellular events involved. This study utilized small interfering RNA (siRNA) technology to knock down TSPO expression. The I/R process was simulated using an anoxia/reoxygenation (A/R) model. The role of TSPO in H9c2 cardiomyocytes was assessed using various techniques, such as Western blotting, Flow cytometry, Reverse transcription-quantitative PCR (RT-qPCR), Immunofluorescence, Co-immunoprecipitation (co-IP) and similar methods. It was found that A/R markedly upregulated the expression of TSPO in cardiomyocytes. Inhibition of TSPO improved myocardial cell apoptosis and damage following A/R stimulation. Additionally, targeting TSPO alleviated mitochondrial damage, reduced mitochondrial ROS release and enhanced ATP synthesis following A/R stimulation. It was further confirmed that A/R stimulation induced a significant increase in the expression of pivotal markers [phosporylated-PKR-like ER kinase (PERK)/PERK, activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1] involved in the adaptive unfolded protein response, which is accompanied by downstream signaling during endoplasmic reticulum (ER) stress. Notably, TSPO knockdown increased the expression of the aforementioned markers and, subsequently, TSPO was confirmed to interact with ATF6, suggesting that TSPO might play a role in ER stress during myocardial I/R injury. Finally, inhibition of TSPO upregulated mitophagy, as indicated by further decreases in P62 and increases in Parkin and PINK1 levels following A/R stimulation. Together, the results suggest that TSPO plays a multifaceted role in myocardial I/R injury. Understanding TSPO-induced cellular responses could inform targeted therapeutic strategies for patients with IHD.

10.
Biochimie ; 224: 41-50, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38782353

RESUMO

The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.


Assuntos
Desenho de Fármacos , Receptores de GABA , Receptores de GABA/metabolismo , Receptores de GABA/química , Humanos , Animais , Ligantes , Modelos Moleculares
11.
Mol Pharm ; 21(7): 3623-3633, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819959

RESUMO

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.


Assuntos
Inflamação , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons , Animais , Coelhos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Inflamação/metabolismo , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Masculino , Macrófagos/metabolismo , Receptores de GABA/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Acetanilidas
12.
Emerg Microbes Infect ; 13(1): 2348528, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38662785

RESUMO

Zika is a systemic inflammatory disease caused by infection with Zika virus (ZIKV). ZIKV infection in adults is associated with encephalitis marked by elevated expression of pro-inflammatory cytokines and chemokines, as well as increased brain infiltration of immune cells. In this study, we demonstrate that ZIKV encephalitis in a mouse infection model exhibits increased brain TSPO expression. TSPO expression on brain-resident and infiltrating immune cells in ZIKV infection correlates with disease and inflammation status in the brain. Brain TSPO expression can also be sensitively detected ex vivo and in vitro using radioactive small molecule probes that specifically bind to TSPO, such as [3H]PK11195. TSPO expression on brain-resident and infiltrating immune cells is a biomarker of ZIKV neuroinflammation, which can also be a general biomarker of acute viral neuroinflammatory disease.


Assuntos
Biomarcadores , Encéfalo , Doenças Neuroinflamatórias , Receptores de GABA , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/virologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/metabolismo , Camundongos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Zika virus/imunologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Feminino , Citocinas/metabolismo
13.
Adv Pharm Bull ; 14(1): 86-104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585455

RESUMO

The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.

14.
Neurosci Lett ; 828: 137766, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583505

RESUMO

INTRODUCTION: The neuroimmune system performs a wide range of functions in the brain and the central nervous system. The microglial translocator protein (TSPO) has an established role as a cell marker in identification of the neuroimmune system. Previously, human studies have shown TSPO differences in neuropsychiatric disorders. Seasonal variability has also been demonstrated in multiple systems of healthy individuals. Therefore, in this study, we attempt to understand whether seasonal changes affect brain TSPO levels using [11C]PBR28 positron emission tomography (PET) imaging. METHODS: 46 healthy subjects (mean age ± SD = 32.5 ± 10); sex (M/F) = 32/14)) underwent PET imaging with [11C]PBR28 in a retrospectively conducted analysis. All PET scans were performed on the HRRT scanner. Volume of distribution (VT) values were generated for cortical and subcortical regions and the cerebellum. Spring/summer months were defined as March to August while fall/winter months were defined as September to February and were compared through 2-tailed t-tests (SciPy library v.1.10.1 and Pinguoin library on Python v.3.8.8). Average daylight hours and temperature in New Haven, CT were obtained online (www.wunderground.com) and compared to VT with Spearman's correlations. RESULTS: There were no significant differences observed between the TSPO levels of spring/summer and fall/winter months in the brain (t = 0.52, p = 0.61). Additional analysis on all individual brain regions also indicated non-significance. Likewise, no significant correlations were found between TSPO levels in the whole brain and brain regions against daylight hours (ρ= 0.05, p = 0.74), temperature (ρ = 0.04, p = 0.81), or month (ρ = 0.08, p = 0.60). Controlling TSPO gene polymorphisms and other variables had no significant effect on the outcome. CONCLUSION: To the best of our knowledge, this is the first human study to investigate seasonal changes in TSPO expression. Our results can be interpreted as the lack of seasonal variability in the neuroimmune system, but important limitations include high interindividual variability, test-retest variability, specificity of the tracer, and a limited sample size. Limitations notwithstanding, our results conclude that TSPO levels in the brain are not impacted by light and temperature changes in different seasons.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Estações do Ano , Estudos Retrospectivos , Receptores de GABA/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo
15.
Biochimie ; 224: 80-90, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38432291

RESUMO

The mitochondrial translocator protein (TSPO) is an outer mitochondrial protein membrane with high affinity for cholesterol. It is expressed in most tissues but is more particularly enriched in steroidogenic tissues. TSPO is involved in various biological mechanisms and TSPO regulation has been related to several diseases. However, despite a considerable number of published studies interested in TSPO over the past forty years, the precise function of the protein remains obscure. Most of the functions attributed to TSPO have been identified using pharmacological ligands of this protein, leading to much debate about the accuracy of these findings. In addition, research on the physiological role of TSPO has been hampered by the lack of in vivo deletion models. Studies to perform genetic deletion of Tspo in animal models have long been unsuccessful, which led to the conclusions that the deletion was deleterious and the gene essential to life. During the last decades, thanks to the significant technical advances allowing genome modification, several models of animal genetically modified for TSPO have been developed. These models have modified our view regarding TSPO and profoundly improved our fundamental knowledge on this protein. However, to date, they did not allow to elucidate the precise molecular function of TSPO and numerous questions persist concerning the physiological role of TSPO and its future as a therapeutic target. This article chronologically reviews the development of deletion and induction models of TSPO.


Assuntos
Receptores de GABA , Animais , Receptores de GABA/genética , Receptores de GABA/metabolismo , Humanos , Deleção de Genes , Fenótipo , Camundongos
16.
Basic Res Cardiol ; 119(3): 481-503, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517482

RESUMO

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.


Assuntos
Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Fosfoproteínas , Animais , Ratos , Benzodiazepinonas , Colesterol/metabolismo , Modelos Animais de Doenças , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Ratos Wistar , Receptores de GABA/metabolismo , Receptores de GABA/genética , Receptores de GABA-A
17.
Front Neurol ; 15: 1352116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445263

RESUMO

Background: Males with multiple sclerosis (MS) have a higher risk for disability progression than females, but the reasons for this are unclear. Objective: We hypothesized that potential differences in TSPO-expressing microglia between female and male MS patients could contribute to sex differences in clinical disease progression. Methods: The study cohort consisted of 102 MS patients (mean (SD) age 45.3 (9.7) years, median (IQR) disease duration 12.1 (7.0-17.2) years, 72% females, 74% relapsing-remitting MS) and 76 age- and sex-matched healthy controls. TSPO-expressing microglia were measured using the TSPO-binding radioligand [11C](R)-PK11195 and brain positron emission tomography (PET). TSPO-binding was quantified as distribution volume ratio (DVR) in normal-appearing white matter (NAWM), thalamus, whole brain and cortical gray matter (cGM). Results: Male MS patients had higher DVRs compared to female patients in the whole brain [1.22 (0.04) vs. 1.20 (0.02), p = 0.002], NAWM [1.24 (0.06) vs. 1.21 (0.05), p = 0.006], thalamus [1.37 (0.08) vs. 1.32 (0.02), p = 0.008] and cGM [1.25 (0.04) vs. 1.23 (0.04), p = 0.028]. Similarly, healthy men had higher DVRs compared to healthy women except for cGM. Of the studied subgroups, secondary progressive male MS patients had the highest DVRs in all regions, while female controls had the lowest DVRs. Conclusion: We observed higher TSPO-binding in males compared to females among people with MS and in healthy individuals. This sex-driven inherent variability in TSPO-expressing microglia may predispose male MS patients to greater likelihood of disease progression.

18.
Methods Mol Biol ; 2785: 177-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427195

RESUMO

This paper provides an overview of the role of neuroinflammation in Alzheimer's disease and other neurodegenerative diseases, highlighting the potential of anti-inflammatory treatments to slow or prevent decline. This research focuses on the use of positron emission tomography (PET) imaging to visualize and quantify molecular brain changes in patients, specifically microglial activation and reactive astrogliosis. We discuss the development and application of several PET radioligands, including first-generation ligands like PK11195 and Ro5-4864, as well as second- and third-generation ligands such as [11C]PBR28, [18F]DPA-714, [18F]GE-180, and [11C]ER176. These ligands target the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia and upregulated in astrocytes. We also address the limitations of these ligands, such as low brain uptake, poor penetration of the blood-brain barrier, short half-life, and variable kinetic behavior. Furthermore, we demonstrate the impact of genetic polymorphisms on ligand binding.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Humanos , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Ligantes , Microglia/metabolismo
19.
Biochem Pharmacol ; 221: 116039, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301966

RESUMO

Translocator protein (18 kDa) (TSPO) plays an important role in retinal neuroinflammation in the early stage of diabetic retinopathy (DR). Studies have found that a FGF1 variant (FGF1ΔHBS) with reduced proliferative potency exerts excellent anti-inflammatory effects and potential therapeutic value for diabetic complications. In this study, intravitreal injection of FGF1ΔHBS was administrated every week for one month in db/db mice, which are genetically predisposed to develop type 2 diabetes mellitus and early retinopathy. Changes in retinal function and structure in the animal models were detected by electrophysiology (ERG) and optical tomography coherence (OCT). TSPO expression and retinal inflammation were analyzed by immunofluorescence, Western blot and real-time qPCR. In the retina of T2D (db/db) mice, FGF1 was significantly down-regulated while FGFR1 was up-regulated (both p < 0.05). TSPO and retinal inflammatory factors were all up-regulated. TSPO and FGFR1 were mainly co-stained in the inner retina. After FGF1ΔHBS treatment, ERG showed that the total amplitude of dark-adapted b-wave and oscillating potentials (Ops) was significantly improved, and OCT showed that the thickness of the retina around the optical nerve head was significantly preserved in T2D mice (all p < 0.05). The TSPO signal was significantly suppressed by FGF1ΔHBS. The activation of NF-κB p65 and the expression of inflammatory factors such as TNF-α, IL-1ß, IL-6, COX-2, MIP-1α, and iNOS were all significantly down-regulated (all p < 0.05). Collectively, our current data demonstrated that intravitreal FGF1ΔHBS treatment can effectively inhibit retinal inflammation via suppressing TSPO signal and to preserve retinal function and structure in a T2D mouse model.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte/metabolismo
20.
Nucl Med Biol ; 128-129: 108878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324923

RESUMO

OBJECTIVE: Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, 18F-fluoro-2-deoxy-d-glucose (18F-FDG). METHODS: Fourteen 7-week-old female Sprague-Dawley rats were used in this study. Longitudinal PET experiments were conducted using 18F-N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide (18F-FEPPA) (n = 3), the TSPO radiotracer, and 18F-FDG (n = 3), both before and after the onset of diabetes. Histological and immunohistochemical staining assays were also conducted in both the control (n = 4) and diabetes (n = 4) groups. RESULTS: Results indicated a significant increase in cardiac tissue uptake of 18F-FEPPA after the onset of diabetes (P < 0.05), aligning with elevated TSPO levels observed in diabetic animals according to histological data. Conversely, the uptake of 18F-FDG in cardiac tissue significantly decreased after the onset of diabetes (P < 0.05). CONCLUSION: These findings suggest that 18F-FEPPA can function as a sensitive probe for detecting chronic inflammation and fibrosis in the cardiac tissues of diabetic animals.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Humanos , Ratos , Feminino , Animais , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Ratos Sprague-Dawley , Tomografia por Emissão de Pósitrons , Inflamação , Fibrose , Receptores de GABA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA