Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1309-1315, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258741

RESUMO

Electrically percolating nanowire networks are among the most promising candidates for next-generation transparent electrodes. Scientific interest in these materials stems from their intrinsic current distribution heterogeneity, leading to phenomena like percolating pathway rerouting and localized self-heating, which can cause irreversible damage. Without an experimental technique to resolve the current distribution and an underpinning nonlinear percolation model, one relies on empirical rules and safety factors to engineer materials. We introduce Bose-Einstein condensate microscopy to address the longstanding problem of imaging active current flow in 2D materials. We report on performance improvement of this technique whereby observation of dynamic redistribution of current pathways becomes feasible. We show how this, combined with existing thermal imaging methods, eliminates the need for assumptions between electrical and thermal properties. This will enable testing and modeling individual junction behavior and hot-spot formation. Investigating both reversible and irreversible mechanisms will contribute to improved performance and reliability of devices.

2.
Nanotechnology ; 34(28)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040718

RESUMO

Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.

3.
Nanotechnology ; 33(10)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610593

RESUMO

p-type CuI films with optimized optoelectronic performance were synthesized by solid-phase iodination of Cu3N precursor films at room temperature. The effects of the deposition power of Cu3N precursors on the structural, electrical, and optical properties of the CuI films were systematically investigated. X-ray diffraction results show that all the CuI films possess a zinc-blende structure. When the deposition power of Cu3N precursors was 140 W, the CuI films present a high transmittance above 84% in the visible region, due to their smaller root-mean-square roughness values of 9.23 nm. Moreover, these films also have a low resistivity of 1.63 × 10-2Ω·cm and a boosted figure of merit of 140.7 MΩ-1. These results are significant achievements among various p-types TCOs, confirming the promising prospects of CuI as a p-type transparent semiconductor applied in transparent electronics.

4.
Adv Mater ; 33(5): e2004356, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33346400

RESUMO

Metal nanowire (MNW)-based transparent electrode technologies have significantly matured over the last decade to become a prominent low-cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost-effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano- to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW-encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.

5.
ACS Appl Mater Interfaces ; 11(28): 24837-24849, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995003

RESUMO

Transparent conductive materials (TCMs) has always been playing a significant role in electronic and photovoltaic area, due to its prominent optical and electronic properties. To render those transparent materials highly conductive, efficient n- and p- type doping is critically needed to obtain high concentration of free electron and hole carriers. Despite extensive research over the past five decades, high-quality p-type doping of wide-band-gap transparent materials remains a challenge. Here, we summarize four proposed design principles to enhance the p-type conductivity of these wide band gap materials, including (i) reducing the formation energy of the acceptors to enhance the dopant concentration; (ii) lowering the ionization energy and, hence, increasing the ionization of the acceptors to increase the concentration of the free holes; (iii) increasing the VBM of the host material to approaching the pinned Fermi level; and (iv) suppressing the compensating donors to shifting the pinning Fermi level toward the VBM. For each mechanism, we discuss in detail its underlying physics and provided some examples to illustrate the design principles. From this review, one could learn the doping principles and have a strategic mind when designing other p-type materials.

6.
ACS Appl Mater Interfaces ; 9(32): 27250-27256, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28748693

RESUMO

All-polymeric flexible transparent heaters (THs) are demonstrated for the first time. Thin films of four poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials embedding different dopants exhibit low sheet resistances, down to 57 Ω sq-1 associated with good transparencies (>87%) and a haze lower than 1%. These transparent thin films show excellent heating properties, with high heating rates (up to 1.6 °C s-1) and steady-state temperatures exceeding 100 °C when subjected to 12 V bias. Very high areal power densities were also measured, reaching almost 10 000 W m-2. The temperature increase is finely fitted to a thermal model. It is further demonstrated that these new THs can be efficiently integrated for applications in thermochromic displays and visor deicers.

7.
Small ; 12(44): 6052-6075, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27753213

RESUMO

Transparent electrodes attract intense attention in many technological fields, including optoelectronic devices, transparent film heaters and electromagnetic applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO's lack of flexibility and the relatively high manufacturing costs have a prompted search into alternative materials. With their outstanding physical properties, metallic nanowire (MNW)-based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution-based processing, and are compatible with large area deposition techniques. Estimations of cost of the technology are lower, in particular thanks to the small quantities of nanomaterials needed to reach industrial performance criteria. The present review investigates recent progress on the main applications reported for MNW networks of any sort (silver, copper, gold, core-shell nanowires) and points out some of the most impressive outcomes. Insights into processing MNW into high-performance transparent conducting thin films are also discussed according to each specific application. Finally, strategies for improving both their stability and integration into real devices are presented.

8.
Nano Lett ; 16(11): 7046-7053, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27753494

RESUMO

Advancement in the science and technology of random metallic nanowire (MNW) networks is crucial for their appropriate integration in many applications including transparent electrodes for optoelectronics and transparent film heaters. We have recently highlighted the discontinuous activation of efficient percolating pathways (EPPs) for networks having densities slightly above the percolation threshold. Such networks exhibit abrupt drops of electrical resistance when thermal or electrical annealing is performed, which gives rise to a "geometrically quantized percolation". In this Letter, lock-in thermography (LiT) is used to provide visual evidence of geometrical quantized percolation: when low voltage is applied to the network, individual "illuminated pathways" can be detected, and new branches get highlighted as the voltage is incrementally increased. This experimental approach has allowed us to validate our original model and map the electrical and thermal distributions in silver nanowire (AgNW) networks. We also study the effects of electrode morphology and wire dimensions on quantized percolation. Furthermore, we demonstrate that the network failure at high temperature can also be governed by a quantized increase of the electrical resistance, which corresponds to the discontinuous destruction of individual pathways (antipercolation). More generally, we demonstrate that LiT is a promising tool for the detection of conductive subclusters as well as hot spots in AgNW networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA