Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(6): 4421-4434, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873446

RESUMO

With the changes of people's lifestyle, hyperlipidemia and hyperglycemia which were induced from a diet high in both fat and sugar have become serious health concerns. Tree peony seed oil (PSO) is a novel kind of edible oil that shows great potential in the food industry because of its high constituent of unsaturated fatty acids. Based 16S rRNA and gut untargeted metabolomics, this study elucidated that the mechanism of PSO regulating blood glucose (Glu) and lipids. The impact of PSO on gut microbiota balance and gut metabolites of mice with a high-fat diet (HFD) was evaluated. The findings indicated that PSO decreased HFD mice's body weight and fat accumulation, ameliorating the levels of blood lipid, reduced liver fat vacuole levels. What's more PSO modulated the proportion of gut microbiota in HFD mice and enhanced the abundance of probiotics. Furthermore, untargeted metabolomic analysis revealed that PSO not only impacted the generation of short-chain fatty acids (SCFAs) by gut microorganism and altered metabolic pathway but exerted influence on secondary bile acids (BA), amino acid metabolism, and various other metabolites. These results suggested that PSO has the potential function for mitigating HFD-induced hyperlipidemia and hyperglycemia by regulating gut microbiota and host metabolism.

2.
Antioxidants (Basel) ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37237994

RESUMO

Tree peony seed oil (TPSO) is an important plant source of n-3 polyunsaturated fatty acid (α-linolenic acid, ALA > 40%) that is receiving increasing attention for its excellent antioxidant and other activities. However, it has poor stability and bioavailability. In this study, a bilayer emulsion of TPSO was successfully prepared using a layer-by-layer self-assembly technique. Among the proteins and polysaccharides examined, whey protein isolate (WPI) and sodium alginate (SA) were found to be the most suitable wall materials. The prepared bilayer emulsion contained 5% TPSO, 0.45% whey protein isolate (WPI) and 0.5% sodium alginate (SA) under selected conditions and its zeta potential, droplet size, and polydispersity index were -31 mV, 1291 nm, and 27%, respectively. The loading capacity and encapsulation efficiency for TPSO were up to 84% and 90.2%, respectively. It was noteworthy that the bilayer emulsion showed significantly enhanced oxidative stability (peroxide value, thiobarbituric acid reactive substances content) compared to the monolayer emulsion, which was accompanied by a more ordered spatial structure caused by the electrostatic interaction of the WPI with the SA. This bilayer emulsion also exhibited markedly improved environmental stability (pH, metal ion), rheological properties, and physical stability during storage. Furthermore, the bilayer emulsion was more easily digested and absorbed, and had higher fatty acid release rate and ALA bioaccessibility than TPSO alone and the physical mixtures. These results suggest that bilayer emulsion containing WPI and SA is an effective TPSO encapsulation system and has significant potential for future functional food development.

3.
Foods ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34945613

RESUMO

In this study, we explored the technical parameters of tree peony seeds oil (TPSO) after their treatment with radio frequency (RF) at 0 °C-140 °C, and compared the results with microwave (MW) and roasted (RT) pretreatment in terms of their physicochemical properties, bioactivity (fatty acid tocopherols and phytosterols), volatile compounds and antioxidant activity of TPSO. RF (140 °C) pretreatment can effectively destroy the cell structure, substantially increasing oil yield by 15.23%. Tocopherols and phytosterols were enhanced in oil to 51.45 mg/kg and 341.35 mg/kg, respectively. In addition, antioxidant activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) were significantly improved by 33.26 µmol TE/100 g and 65.84 µmol TE/100 g, respectively (p < 0.05). The induction period (IP) value increased by 4.04 times. These results are similar to those of the MW pretreatment. The contents of aromatic compounds were significantly increased, resulting in improved flavors and aromas (roasted, nutty), by RF, MW and RT pretreatments. The three pretreatments significantly enhanced the antioxidant capacities and oxidative stabilities (p < 0.05). The current findings reveal RF to be a potential pretreatment for application in the industrial production of TPSO.

4.
Foods ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545196

RESUMO

Tree peonies (Paeonia ostii and Paeonia rockii) are popular ornamental plants. Moreover, these plants have become oil crops in recent years. However, there are limited compositional studies focused on fatty acids. Therefore, this work aims to reveal compositional characteristics, regarding fatty acids, sterols, γ-tocopherol and phenolic compounds, of tree peony seed oils from all major cultivation areas in China, and to compare with herbaceous peony seed oil. For that, an integrative analysis was performed by GC-FID, GC-MS and UHPLC-Q-TOF-MS technologies. The main fatty acid was α-linolenic acid (39.0-48.3%), while ß-sitosterol (1802.5-2793.7 mg/kg) and fucosterol (682.2-1225.1 mg/kg) were the dominant phytosterols. Importantly, 34 phenolic compounds, including paeonol and "Paeonia glycosides" (36.62-103.17 µg/g), were characterized in vegetable oils for the first time. Conclusively, this work gives new insights into the phytochemical composition of peony seed oil and reveals the presence of bioactive compounds, including "Paeonia glycosides".

5.
J Chromatogr A ; 1610: 460540, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31543337

RESUMO

Silver magnetic amino silicone adhesive (Fe3O4@SiO2@NH2@Ag) particles were prepared for the purification of α-linolenic acid from tree peony seed oil under applied magnetic field. First, Fe3O4@SiO2@NH2@Ag particles were prepared and physicochemically characterized, including XRD, TG, FTIR, SEM, magnetic hysteresis curves and elemental analysis. The static process for the purification of α-linolenic acid using Fe3O4@SiO2@NH2@Ag particles was investigated, including adsorption curve, desorption curve, elution solvent composition and adsorption isotherm. The result indicated that 0-1-4% acetone-n-hexane elution solvent was selected for the gradient elution process, 2 h and 60 min were the time required to reach adsorption and desorption equilibrium, 20 °C was selected as the adsorption temperature, Langmuir model was suitable to fit and explain the equilibrium data, and the adsorption process was spontaneous and exothermic. Under applied magnetic field, the dynamic process for the purification of α-linolenic acid using Fe3O4@SiO2@NH2@Ag particles was investigated, and the optimum conditions were 20:1 µL/g loading amount, 0.5 mL/min flow rate and 51.73 Oe magnetic field intensity. After purification, the purity and recovery ratio of α-linolenic acid were calculated to be 94% and 74%, respectively. Furthermore, the recycled Fe3O4@SiO2@NH2@Ag particles still achieved better purification result. Therefore, the developed method shows a good application prospect in the field of separation and purification of α-linolenic acid.


Assuntos
Nanopartículas de Magnetita/química , Paeonia/química , Silicones/química , Prata/química , Ácido alfa-Linolênico , Adesivos , Campos Magnéticos , Óleos de Plantas/química , Sementes/química , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/isolamento & purificação , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA