Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Med Sci ; 19(2): 488-498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034541

RESUMO

Introduction: Docosahexaenoic acid (DHA) supplementation has been reported to negatively correlate with cancer cell proliferation and tumour development in many cancer types. Although cumulative evidence has demonstrated the apoptotic effect and cytotoxicity of DHA against tumour development in many cell types, the precise cellular and biochemical mechanisms of DHA-induced apoptosis in human endometrial cancer cells have not been investigated. Material and methods: MTT assay was performed to confirm the degree of apoptosis by combining treatment with DHA and triacsin C in endometrial cancer cell line. The synergistic effects of triacsin C and DHA were identified by performing flowcytometry and immunoblotting analysis. Results: Combined treatment with DHA and triacsin C significantly induced apoptosis in RL95-2 endometrial carcinoma cells. Combined treatment with 125 µM DHA and 5 µM triacsin C significantly increased the sub-G1 population and apoptotic fragments in endometrial carcinoma cells. It was also demonstrated that DHA and triacsin C induced apoptosis through mitochondrial pathways via caspases-9, -3, and -7 as well as through the extrinsic pathway by activation of caspase-8/BID. Conclusions: Further elucidation of the apoptotic mechanisms involving DHA treatment with ACS ablation could shed light on possible new treatment strategies for endometrial cancer. In addition, further research into the mechanisms of DHA and triacsin C-induced apoptotic mechanisms may lead to the development of therapeutic strategies for endometrial cancer.

2.
Acta Pharmacol Sin ; 43(1): 39-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33767380

RESUMO

Alzheimer's disease (AD) is associated with high incidence of cardiovascular events but the mechanism remains elusive. Our previous study reveals a tight correlation between cardiac dysfunction and low mitochondrial aldehyde dehydrogenase (ALDH2) activity in elderly AD patients. In the present study we investigated the effect of ALDH2 overexpression on cardiac function in APP/PS1 mouse model of AD. Global ALDH2 transgenic mice were crossed with APP/PS1 mutant mice to generate the ALDH2-APP/PS1 mutant mice. Cognitive function, cardiac contractile, and morphological properties were assessed. We showed that APP/PS1 mice displayed significant cognitive deficit in Morris water maze test, myocardial ultrastructural, geometric (cardiac atrophy, interstitial fibrosis) and functional (reduced fractional shortening and cardiomyocyte contraction) anomalies along with oxidative stress, apoptosis, and inflammation in myocardium. ALDH2 transgene significantly attenuated or mitigated these anomalies. We also noted the markedly elevated levels of lipid peroxidation, the essential lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4), the transcriptional regulator for ACLS4 special protein 1 (SP1) and ferroptosis, evidenced by elevated NCOA4, decreased GPx4, and SLC7A11 in myocardium of APP/PS1 mutant mice; these effects were nullified by ALDH2 transgene. In cardiomyocytes isolated from WT mice and in H9C2 myoblasts in vitro, application of Aß (20 µM) decreased cell survival, compromised cardiomyocyte contractile function, and induced lipid peroxidation; ALDH2 transgene or activator Alda-1 rescued Aß-induced deteriorating effects. ALDH2-induced protection against Aß-induced lipid peroxidation was mimicked by the SP1 inhibitor tolfenamic acid (TA) or the ACSL4 inhibitor triacsin C (TC), and mitigated by the lipid peroxidation inducer 5-hydroxyeicosatetraenoic acid (5-HETE) or the ferroptosis inducer erastin. These results demonstrate an essential role for ALDH2 in AD-induced cardiac anomalies through regulation of lipid peroxidation and ferroptosis.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Presenilina-1/metabolismo , Doença de Alzheimer/patologia , Animais , Relação Dose-Resposta a Droga , Ferroptose , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Contração Miocárdica , Relação Estrutura-Atividade
3.
J Bioenerg Biomembr ; 49(5): 399-411, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28918598

RESUMO

Intracellular long-chain acyl-CoA synthetases (ACSL) activate fatty acids to produce acyl-CoA, which undergoes ß-oxidation and participates in the synthesis of esterified lipids such as triacylglycerol (TAG). Imbalances in these metabolic routes are closely associated with the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Triacsin C is one of the few compounds that inhibit TAG accumulation into lipid droplets (LD) by suppressing ACSL activity. Here we report that treatment of primary rat hepatocytes with triacsin C at concentrations lower than the IC50 (4.1 µM) for LD formation: (i) diminished LD number in a concentration-dependent manner; (ii) increased mitochondrial amount; (iii) markedly improved mitochondrial metabolism by enhancing the ß-oxidation efficiency, electron transport chain capacity, and degree of coupling - treatment of isolated rat liver mitochondria with the same triacsin C concentrations did not affect the last two parameters; (iv) decreased the GSH/GSSG ratio and elevated the protein carbonyl level, which suggested an increased reactive oxygen species production, as observed in isolated mitochondria. The hepatocyte mitochondrial improvements were not related to either the transcriptional levels of PGC-1α or the content of mTOR and phosphorylated AMPK. Triacsin C at 10 µM induced hepatocyte death by necrosis and/or apoptosis through mechanisms associated with mitochondrial permeability transition pore opening, as demonstrated by experiments using isolated mitochondria. Therefore, triacsin C at sub-IC50 concentrations modulates the lipid imbalance by shifting hepatocytes to a more oxidative state and enhancing the fatty acid consumption, which can in turn accelerate lipid oxidation and reverse NAFLD in long-term therapies.


Assuntos
Hepatócitos/citologia , Gotículas Lipídicas/efeitos dos fármacos , Triazenos/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Biogênese de Organelas , Ratos , Triazenos/uso terapêutico
4.
J Biol Chem ; 291(10): 4966-73, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26719343

RESUMO

RPE65 is the isomerase catalyzing conversion of all-trans-retinyl ester (atRE) into 11-cis-retinol in the retinal visual cycle. Crystal structures of RPE65 and site-directed mutagenesis reveal aspects of its catalytic mechanism, especially retinyl moiety isomerization, but other aspects remain to be determined. To investigate potential interactions between RPE65 and lipid metabolism enzymes, HEK293-F cells were transfected with expression vectors for visual cycle proteins and co-transfected with either fatty acyl:CoA ligases (ACSLs) 1, 3, or 6 or the SLC27A family fatty acyl-CoA synthase FATP2/SLCA27A2 to test their effect on isomerase activity. These experiments showed that RPE65 activity was reduced by co-expression of ACSLs or FATP2. Surprisingly, however, in attempting to relieve the ACSL-mediated inhibition, we discovered that triacsin C, an inhibitor of ACSLs, also potently inhibited RPE65 isomerase activity in cellulo. We found triacsin C to be a competitive inhibitor of RPE65 (IC50 = 500 nm). We confirmed that triacsin C competes directly with atRE by incubating membranes prepared from chicken RPE65-transfected cells with liposomes containing 0-1 µM atRE. Other inhibitors of ACSLs had modest inhibitory effects compared with triascin C. In conclusion, we have identified an inhibitor of ACSLs as a potent inhibitor of RPE65 that competes with the atRE substrate of RPE65 for binding. Triacsin C, with an alkenyl chain resembling but not identical to either acyl or retinyl chains, may compete with binding of the acyl moiety of atRE via the alkenyl moiety. Its inhibitory effect, however, may reside in its nitrosohydrazone/triazene moiety.


Assuntos
Inibidores Enzimáticos/farmacologia , Triazenos/farmacologia , cis-trans-Isomerases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Coenzima A Ligases/antagonistas & inibidores , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , cis-trans-Isomerases/antagonistas & inibidores , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
5.
Eur J Pharmacol ; 785: 59-69, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26164793

RESUMO

Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.


Assuntos
Ácido Araquidônico/metabolismo , Eicosanoides/biossíntese , Gotículas Lipídicas/metabolismo , Mastócitos/metabolismo , Triglicerídeos/metabolismo , Animais , Humanos , Mastócitos/citologia , Mastócitos/imunologia
6.
Front Microbiol ; 6: 753, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257723

RESUMO

Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate FA scavenged from the host. ACS is an essential enzyme because FA need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or Michaelis-Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 µM, K i = 0.18 µM for GiACS1, and IC50 = 2.28 µM, K i = 0.23 µM for GiACS2, respectively) and the growth of G. intestinalis in vitro (IC50 = 0.8 µM). As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.

7.
Biochem Biophys Res Commun ; 465(3): 528-33, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26282205

RESUMO

Long chain acyl-CoA synthetases (ACSLs) are a family of enzymes that convert free long chain fatty acids into their acyl-CoA forms. Among ACSL enzymes, ACSL4 prefers arachidonic acid (AA) as a substrate and plays an important role in re-esterification of free AA. We previously reported that the suppression of ACSL4 activity by treatment with an ACSL inhibitor or a small interfering RNA markedly enhanced interleukin-1ß (IL-1ß)-dependent prostaglandin (PG) biosynthesis in rat fibroblastic 3Y1 cells. We show here that in addition to these prostanoids, cytokine-dependent production of 5,11-dihydroxyeicosatetraenoic acid (5,11-diHETE), a cyclooxygenase product of 5-hydroxyeicosatetraenoic acid (5-HETE), was enhanced by the inhibition of ACSL4 activity. Treatment of several types of cells with an ACSL inhibitor, triacsin C, markedly enhanced IL-1ß-dependent production of 5,11-diHETE. siRNA-mediated knockdown of ACSL4 also enhanced IL-1ß-dependent production of 5,11-diHETE from 3Y1 cells. The production of 5,11-diHETE was significantly decreased by a cyclooxygenase (COX)-2 selective inhibitor, NS-398, but not by a 5-lipoxygenase activating protein (FLAP) inhibitor, MK-886. The inhibition of ACSL enzymes significantly facilitated release of not only 5-HETE but also 8-HETE, 9-HETE, 11-HETE, 12-HETE, and 15-HETE, independently of IL-1ß stimulation. In vitro analysis showed that a recombinant COX-2 enzyme more effectively metabolized 5(S)-HETE to 5-11-diHETE compared to COX-1 enzyme. From these results, we proposed the following mechanism of 5,11-diHETE biosynthesis in these cells: 1) inhibition of ACSL4 causes accumulation of free AA; 2) the accumulated AA is nonspecifically converted into various HETEs; and 3) among these HETEs, 5-HETE is metabolized into 5,11-diHETE by cytokine-induced COX-2.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Animais , Linhagem Celular , Humanos , Ratos , Transdução de Sinais/fisiologia
8.
Bioorg Med Chem Lett ; 24(4): 1057-61, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24480468

RESUMO

Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [(14)C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Linhagem Celular , Coenzima A Ligases/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Estrutura Molecular , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo , Relação Estrutura-Atividade
9.
J Infect Dis ; 209(8): 1279-87, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24273180

RESUMO

BACKGROUND: Cryptosporidium is emerging as 1 of the 4 leading diarrheal pathogens in children in developing countries. Its infections in patients with AIDS can be fatal, whereas fully effective treatments are unavailable. The major goal of this study is to explore parasite fatty acyl-coenzyme A synthetase (ACS) as a novel drug target. METHODS: A colorimetric assay was developed to evaluate biochemical features and inhibitory kinetics of Cryptosporidium parvum ACSs using recombinant proteins. Anticryptosporidial efficacies of the ACS inhibitor triacsin C were evaluated both in vitro and in vivo. RESULTS: Cryptosporidium ACSs displayed substrate preference toward long-chain fatty acids. The activity of parasite ACSs could be specifically inhibited by triacsin C with the inhibition constant Ki in the nanomolar range. Triacsin C was highly effective against C. parvum growth in vitro (median inhibitory concentration, 136 nmol/L). Most importantly, triacsin C effectively reduced parasite oocyst production up to 88.1% with no apparent toxicity when administered to Cryptosporidium-infected interleukin 12 knockout mice at 8-15 mg/kg/d for 1 week. CONCLUSIONS: The findings of this study not only validated Cryptosporidium ACS (and related acyl-[acyl-carrier-protein]-ligases) as pharmacological targets but also indicate that triacsin C and analogues can be explored as potential new therapeutics against the virtually untreatable cryptosporidial infection in immunocompromised patients.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Triazenos/farmacologia , Animais , Técnicas de Cultura de Células , Clonagem de Organismos , Coenzima A Ligases/metabolismo , Criptosporidiose/enzimologia , Humanos , Camundongos
10.
World J Gastroenterol ; 17(44): 4883-9, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22171129

RESUMO

AIM: To investigate whether human acyl-CoA synthetase 5 (ACSL5) is sensitive to the ACSL inhibitor triacsin C. METHODS: The ACSL isoforms ACSL1 and ACSL5 from rat as well as human ACSL5 were cloned and recombinantly expressed as 6xHis-tagged enzymes. Ni(2+)-affinity purified recombinant enzymes were assayed at pH 7.5 or pH 9.5 in the presence or absence of triacsin C. In addition, ACSL5 transfected CaCo2 cells and intestinal human mucosa were monitored. ACSL5 expression in cellular systems was verified using Western blot and immunofluorescence. The ACSL assay mix included TrisHCl (pH 7.4), ATP, CoA, EDTA, DTT, MgCl(2), [9,10-(3)H] palmitic acid, and triton X-100. The 200 µL reaction was initiated with the addition of solubilized, purified recombinant proteins or cellular lysates. Reactions were terminated after 10, 30 or 60 min of incubation with Doles medium. RESULTS: Expression of soluble recombinant ACSL proteins was found after incubation with isopropyl beta-D-1-thiogalactopyranoside and after ultracentrifugation these were further purified to near homogeneity with Ni(2+)-affinity chromatography. Triacsin C selectively and strongly inhibited recombinant human ACSL5 protein at pH 7.5 and pH 9.5, as well as recombinant rat ACSL1 (sensitive control), but not recombinant rat ACSL5 (insensitive control). The IC50 for human ACSL5 was about 10 µmol/L. The inhibitory triacsin C effect was similar for different incubation times (10, 30 and 60 min) and was not modified by the N- or C-terminal location of the 6xHis-tag. In order to evaluate ACSL5 sensitivity to triacsin C in a cellular environment, stable human ACSL5 CaCo2 transfectants and mechanically dissected normal human intestinal mucosa with high physiological expression of ACSL5 were analyzed. In both models, ACSL5 peak activity was found at pH 7.5 and pH 9.5, corresponding to the properties of recombinant human ACSL5 protein. In the presence of triacsin C (25 µmol/L), total ACSL activity was dramatically diminished in human ACSL5 transfectants as well as in ACSL5-rich human intestinal mucosa. CONCLUSION: The data strongly indicate that human ACSL5 is sensitive to triacsin C and does not compensate for other triacsin C-sensitive ACSL isoforms.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Isoenzimas/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Triazenos/farmacologia , Animais , Linhagem Celular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Humanos , Concentração Inibidora 50 , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA