Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(6): 189193, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39413858

RESUMO

CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.

2.
Cell Signal ; 124: 111468, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395526

RESUMO

Lactylation, a newly identified post-translational modification, is uncertain in its implication in triple-negative breast cancer (TNBC). In this study, we analyzed 60 TNBC samples using immunohistochemical staining and revealed elevated levels of pan-lactylated proteins and specific histone H4K12 lactylation in tumor tissues, correlating with TNBC progression. Lactate exposure in TNBC cell lines significantly induced lysine lactylation at the H4K12 site, leading to alterations in gene profiles and reduced apoptosis. These effects were attenuated by DCA or sodium Oxamate, inhibitors of endogenous lactate production. Gene sequencing showed an increase in Schlafen 5 (SLFN5) expression in TNBC cells treated with Oxamate, contrasting with the effects of lactate exposure. Analysis of TNBC tissues showed a negative correlation between H4K12 lactylation and SLFN5 protein levels. Overexpression of SLFN5 countered the effects of lactate on apoptosis and tumor growth, highlighting its pivotal role in TNBC malignancy. CUT&Tag sequencing indicated that lactylated H4K12 potentially binds to the SLFN5 promoter region. Luciferase reporter assays further verified that lactate-induced suppression of SLFN5 promoter activity is mediated by wild-type H4K12, but not by its R or A mutants, verified by both in vitro and in vivo apoptosis detection in response to lactate and Oxamate stimulation. These results establish that H4K12 lactylation, induced by lactate in TNBC cells, specifically suppresses SLFN5 expression, contributing to TNBC malignancy. Our findings illuminate a critical histone lactylation-dependent carcinogenic pathway in TNBC.

3.
Drug Dev Res ; 85(7): e22266, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39363532

RESUMO

This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from -31.9 ± 3 mV to -40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with 89Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for 89Zr-DFO@mAb and 96 ± 3% for 89Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for 89Zr-DFO@mAb-NP and 0.98 ± 0.2 for 89Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.


Assuntos
Nanopartículas , Radioisótopos , Neoplasias de Mama Triplo Negativas , Zircônio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Nanopartículas/química , Zircônio/química , Radioisótopos/química , Linhagem Celular Tumoral , Desferroxamina/química , Desferroxamina/farmacologia , Feminino
4.
Cancer Med ; 13(20): e70336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39445528

RESUMO

BACKGROUND: Emerging evidence has indicated possible efficacy benefit of platinum-based chemotherapy as neoadjuvant treatment for invasive ductal carcinoma triple-negative breast cancer (TNBC). However, it has not been endorsed by current guidelines due to highly controversial results. MATERIALS AND METHODS: Present study aims to investigate predictive and prognostic roles concerning single nucleotide polymorphisms (SNPs) in XRCC1 and BRCA1, BRCA2 genes for early stage TNBC patients that received platinum-based neoadjuvant treatment. We prospectively enrolled women with stage IIB-IIIB TNBC that had progressed on neoadjuvant taxane and anthracycline-based chemotherapy at Xinjiang Medical University Affiliated Cancer Hospital. Tumor response and pathological complete response (pCR) rate were assessed. Invasive disease-free survival (iDFS) and overall survival (OS) were analyzed. Patients' blood samples were subject to Sanger sequencing to genotype XRCC1 Arg194Trp and Arg399Gln, BRCA1 s1799949, and BRCA2 rs206115. Univariate and multivariate logistic regressions were employed to investigate associations between SNPs and clinical characteristics with treatment response and pCR. A total of 45 patients were enrolled. RESULTS: The cohort showcased ORR of 44.4%, pCR of 28.9%, median iDFS of 22 months, and a 3-year OS of 73.3%. The A/G and G/G genotypes of BRCA1 rs1799949, and the T/T genotype of BRCA2 rs206115 were associated with higher responsive rate. Histologic grade of III and Ki67 expression > 65% were associated with low responsive rate. Moreover, the A/G genotype of BRCA1 rs1799949 and T/T genotype of BRCA2 rs206115 correlated to high pCR. The histologic III and T4 stage correlated to inferior iDFS. Carrier of BRCA1 rs1799949 G/G had the most favorable OS, carriers of A/A showed the poorest OS, and those with A/G genotype showed an intermediate OS. CONCLUSIONS: Platinum-based chemotherapy might serve as a therapeutic option for TNBC patients who were resistant to anthracycline- and taxane-based neoadjuvant therapy. Our study identified several genetic and clinical features that might function as prognostic and predictive markers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Proteína BRCA1 , Biomarcadores Tumorais , Terapia Neoadjuvante , Polimorfismo de Nucleotídeo Único , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Prognóstico , Proteína BRCA1/genética , Biomarcadores Tumorais/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estadiamento de Neoplasias , Proteína BRCA2/genética , Idoso , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Estudos Prospectivos , Resultado do Tratamento
5.
Eur J Med Chem ; 280: 116971, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39427518

RESUMO

A series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level. Meanwhile, molecular docking and dynamic studies disclosed that compound 12i could bind to PAK4 stably via multiple interactions applied between the compound and the enzyme. Further mechanism studies indicated that compound 12i could inhibit the proliferation and suppress the migratory potential of MDA-MB-231 cells by inhibiting the phosphorylation of PAK4 and LIMK1, arresting cell cycle in the G0/G1 phase, inducing apoptosis and promoting ROS production. Notably, compound 12i could effectively inhibit triple-negative breast cancer (TNBC) growth with little toxicity in the MDA-MB-231 cell xenograft model. Taken together, in vitro and in vivo results demonstrated that compound 12i possessed high drug potential as an inhibitor of PAK4 to inhibit the growth and metastasis of TNBC.

6.
Front Oncol ; 14: 1450980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286016

RESUMO

Triple-negative breast cancer (TNBC) represents the most formidable subtype of breast cancer, characterized by a notable dearth in targeted therapeutic options. Deciphering the underlying molecular mechanisms of TNBC is pivotal for improving patient outcomes. Recent scientific advancements have spotlighted long non-coding RNAs (lncRNAs) as key players in the genesis, progression, and metastasis of cancers. This review delineates the significant influence of lncRNAs on the advancement, detection, and neoadjuvant chemotherapy efficacy in TNBC, detailing the diverse expression patterns of aberrant lncRNAs. The paper explores the specific mechanisms by which lncRNAs regulate gene expression in both the nucleus and cytoplasm, with a special focus on their involvement in TNBC's post-transcriptional landscape. Thorough investigations into TNBC-associated lncRNAs not only forge new avenues for early diagnosis and potent treatment strategies but also highlight these molecules as promising therapeutic targets, heralding an era of personalized and precision medicine in TNBC management.

7.
Heliyon ; 10(17): e36935, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286192

RESUMO

Breast cancer emerges as one of the most prevalent malignancies in women, its incidence showing a concerning upward trend. Among the diverse array of breast cancer subtypes, triple-negative breast cancer (TNBC) assumes notable significance, due to lack of estrogen, progesterone, and HER-2 receptors. More focus has to be placed on creating effective therapy due to the high prevalence and rising incidence of TNBC. Currently, conventional passive treatments have several drawbacks that have not yet been resolved. On the other hand, as innovative immunotherapy approaches, cancer vaccines have offered promising prospects in combatting advanced stages of TNBC. Therefore, the main objective of this study was to utilize WT1 and NY-ESO-1 antigenic proteins in designing a multiepitope vaccine against TNBC. Initially, to generate robust immune responses, we identified antigenic epitopes of both proteins and assessed their immunogenicity. In order to reduce junctional immunogenicity, promiscuous epitopes were joined using the suitable adjuvant (50S ribosomal L7/L12 protein) and incorporated appropriate linkers (GPGPG, AAY, and EAAAK). The best predicted 3D model was refined and validated to achieve an excellent 3D model. Molecular docking analysis and dynamic simulation were conducted to demonstrate the structural stability and integrity of the vaccine/TLR-4 complex. Finally, the vaccine was cloned into the vector pET28 (+). Thus, analysis of the constructed vaccine through immunoinformatics indicates its capability to elicit robust humoral and cellular immune responses in the targeted organism. As such, it holds promise as a therapeutic weapon against TNBC and may open doors for further research in the field.

8.
Transl Cancer Res ; 13(8): 4042-4051, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39262467

RESUMO

Background: The majority of small-sized (<3 cm) triple-negative breast cancer (TNBC) exhibit smooth margins upon palpation and are often oval or rounded masses. Distinguishing these masses preoperatively from fibroadenomas (FAs) would be very meaningful for clinical practice. The aim of our study was to evaluate the magnetic resonance imaging (MRI) appearance of TNBC and differentiate it from FAs. Methods: In this retrospective single-center study, we included 37 patients with TNBCs and 36 patients with FAs who underwent breast MRI. We employed the χ2 test and t-test to compare the differences in morphological features, dynamic contrast-enhanced MRI (DCE-MRI) parameters, and apparent diffusion coefficient (ADC) values between the two groups. Additionally, we constructed non-parametric receiver operating characteristic (ROC) curves using ADC values, with pathological results serving as the gold standard. Results: A total of 37 TNBC lesions and 39 FA lesions were included in the final analysis. TNBCs exhibited more frequent irregular shape, irregular margins, peritumoral edema, fast enhancement in the initial phase, rim enhancement, and time-signal intensity curve (TIC) type III compared to FAs (all P<0.05). Conversely, low-signal segregation in T2-weighted imaging (T2WI) and TIC type I were commonly found in FAs. The mean ADC value of TNBCs was significantly lower than that of FAs [(1.104±0.13)×10-3 vs. (1.613±0.16)×10-3 mm2/s, P<0.05]. The cutoff ADC for differentiating TNBCs from FAs was 1.239×10-3 mm2/s, yielding an area under the curve (AUC) of 0.997, a sensitivity of 94.6%, and a specificity of 100%. Conclusions: The morphological presentation of MRI, internal enhancement features of the mass, TIC curves, and ADC values provide valuable differential diagnostic information for TNBC and FA masses with a maximum diameter of less than 3 cm.

9.
Cancers (Basel) ; 16(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39272915

RESUMO

Triple-negative breast cancer is aggressive and challenging to treat because of a lack of targets and heterogeneity among tumors. A paramount factor in the mortality from breast cancer is metastasis, which is driven by genetic and phenotypic alterations that drive epithelial-mesenchymal transition, stemness, survival, migration and invasion. Many genetic and epigenetic mechanisms have been identified in triple-negative breast cancer that drive these metastatic phenotypes; however, this knowledge has not yet led to the development of effective drugs for metastatic triple-negative breast cancer (mTNBC). One that may not have received enough attention in the literature is post-translational regulation of broad sets of cancer-related genes through inhibitory microRNAs and the complex competitive endogenous RNA (ceRNA) regulatory networks they are influenced by. This field of study and the resulting knowledge regarding alterations in these networks is coming of age, enabling translation into clinical benefit for patients. Herein, we review metastatic triple-negative breast cancer (mTNBC), the role of ceRNA network regulation in metastasis (and therefore clinical outcomes), potential approaches for therapeutic exploitation of these alterations, knowledge gaps and future directions in the field.

10.
Sci Rep ; 14(1): 21449, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271768

RESUMO

Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-related genes and triple-negative breast cancer (TNBC) development. Stemness gene sets were downloaded from StemChecker. Based on the online databases, a consensus clustering algorithm was conducted for unsupervised classification of TNBC samples. The variations between subtypes were assessed with regard to prognosis, tumor immune microenvironment (TIME), and chemotherapeutic sensitivity. The stemness-related gene signature was established and random survival forest analysis was employed to identify the core gene for validation experiments and tumor sphere formation assays. 499 patients with TNBC were classified into three subgroups and the Cluster 1 had a better OS than others. After that, WGCNA study was performed to identify genes important for Cluster 1 subtype. Out of all 8 modules, the subtype of Cluster 1 and the yellow module with 103 genes demonstrated the largest positive association. After that, a four-gene stemness-related signature was established. Based on the yellow module, the 39 potential pivotal genes were subjected to the random forest survival analysis to find out the gene that was relatively important for OS. KIF15 was confirmed as the targeted gene by LASSO and random survival forest analyses. In vitro experiments, the downregulation of KIF15 promoted the stemness of TNBC cells. The expression levels of stem cell markers Nanog, SOX2, and OCT4 were found to be elevated in TNBC cell lines after KIF15 inhibition. A stemness-associated risk model was constructed to forecast the clinical outcomes of TNBC patients. The downregulation of KIF15 expression in a subpopulation of TNBC stem cells may promote stemness and possibly TNBC progression.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Cinesinas , Aprendizado de Máquina , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Cinesinas/genética , Cinesinas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Prognóstico , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Algoritmos
11.
J Pers Med ; 14(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39338198

RESUMO

Triple-negative breast cancer (TNBC) presents a significant medical challenge due to its highly invasive nature, high rate of metastasis, and lack of drug-targetable receptors, which together lead to poor prognosis and limited treatment options. The traditional treatment guidelines for early TNBC are based on a multimodal approach integrating chemotherapy, surgery, and radiation and are associated with low overall survival and high relapse rates. Therefore, the approach to treating early TNBC has shifted towards neoadjuvant treatment (NAC), given to the patient before surgery and which aims to reduce tumour size, reduce the risk of recurrence, and improve the pathological complete response (pCR) rate. However, recent studies have shown that NAC is associated with only 30% of patients achieving pCR. Thus, novel predictive biomarkers are essential if treatment decisions are to be optimised and chemotherapy toxicities minimised. Given the heterogeneity of TNBC, mass spectrometry-based proteomics technologies offer valuable tools for the discovery of targetable biomarkers for prognosis and prediction of toxicity. These biomarkers can serve as critical targets for therapeutic intervention. This review aims to provide a comprehensive overview of TNBC diagnosis and treatment, highlighting the need for a new approach. Specifically, it highlights how mass spectrometry-based can address key unmet clinical needs by identifying novel protein biomarkers to distinguish and early prognostication between TNBC patient groups who are being treated with NAC. By integrating proteomic insights, we anticipate enhanced treatment personalisation, improved clinical outcomes, and ultimately, increased survival rates for TNBC patients.

12.
Life Sci ; 357: 123059, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278618

RESUMO

The complex heterogeneity of tumor microenvironment (TME) of triple-negative breast cancer (TNBC) presents a significant obstacle to cytotoxic immune response and successful treatment, building up one of the most hostile oncological phenotypes. Among the most abundant TME components, tumor-associated macrophages (TAMs) have pivotal pro-tumoral functions, involving discordant roles for the nuclear factor kappa-B (NF-κB) transcription factors and directing to higher levels of pathway complexity. In both resting macrophages and TAMs, we recently revealed the existence of the uncharacterized NF-κB p65/p52 dimer. In the present study, we demonstrated its enhanced active nuclear localization in TAMs and validated selected immune target genes as directly regulated by dimer binding on DNA sequences. We demonstrated by ChIP-qPCR that p65/p52 enrichment on HSPG2 and CSF-1 regulatory regions is strictly dependent on macrophage polarization and tumor environment. Our data provide novel mechanisms of transcriptional regulation in TAMs, orchestrated by the varied and dynamic nature of NF-κB combinations, which needs to be considered when targeting this pathway in cancer therapies. Our results offer p65/p52, together with identified regulatory regions on genes impacting macrophage behavior and tumor biology, as novel molecular targets for TNBC, aimed at modulating TAMs functions towards anti-tumoral phenotypes and thus improving cancer treatment outcomes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator de Transcrição RelA , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Macrófagos Associados a Tumor , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Macrófagos/imunologia , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia
13.
ACS Appl Mater Interfaces ; 16(42): 56676-56695, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39267454

RESUMO

This study presents the use of nanoscale covalent organic frameworks (nCOFs) conjugated with tumor-targeting peptides for the targeted therapy of triple-negative breast cancer (TNBC). While peptides have previously been used for targeted delivery, their conjugation with COFs represents an innovative approach in this field. In particular, we have developed alkyne-functionalized nCOFs chemically modified with cyclic RGD peptides (Alkyn-nCOF-cRGD). This configuration is designed to specifically target αvß3 integrins that are overexpressed in TNBC cells. These nCOFs exhibit excellent biocompatibility and are engineered to selectively disintegrate under acidic conditions, allowing for precise and localized drug release in tumor environment. Doxorubicin, a chemotherapeutic agent, has been encapsulated in these nCOFs with high loading efficiency. The therapeutic potential of Alkyn-nCOF-cRGD has been demonstrated in vitro and in vivo models. It shows significantly improved drug uptake and targeted cell death in TNBC, highlighting the efficacy of receptor-mediated endocytosis and pH-controlled drug release. This strategy leverages the unique properties of nCOFs with targeted drug delivery to achieve significant advances in personalized cancer therapy and set a new standard for precision chemotherapeutic delivery.


Assuntos
Doxorrubicina , Estruturas Metalorgânicas , Peptídeos Cíclicos , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Peptídeos Cíclicos/química , Feminino , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Animais , Estruturas Metalorgânicas/química , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Medicina de Precisão
14.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3868-3877, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099360

RESUMO

The study investigated the effect of Compound Shougong Powder(CSGP) on the biological functions of triple-negative breast cancer(TNBC) cells and whether its mechanism of action was related to the epithelial-mesenchymal transition(EMT) signaling pathway. TNBC cells(MDA-MB-231 and BT-549) were treated with different concentrations of CSGP-containing serum. MTS assay was used to detect the effect of CSGP on the proliferation of TNBC cells. The EdU staining was used to detect the effect of CSGP on the proliferation of TNBC cells. Flow cytometry was used to examine the impact of CSGP on apoptosis of TNBC cells. Wound-healing and Transwell assays were used to evaluate the effects of different concentrations of CSGP on the migration and invasion capabilities of TNBC cells. RNA sequencing technology was utilized to elucidate its mechanism. Subsequently, qRT-PCR was performed to measure the mRNA expression levels of E-cadherin, N-cadherin, Slug, Snail, Vimentin, Twist, Zinc finger E-box-Binding homeobox 1(Zeb1), and Zinc finger E-box-Binding homeobox 2(Zeb2). Western blot was used to assess the protein expression levels of Slug, Vimentin, and E-cadherin. After intervention with CSGP, the proliferation of MDA-MB-231 and BT-549 cells significantly decreased, while the apoptosis rate markedly increased. The expression levels of the epithelial marker protein E-cadherin significantly increased, while the expression levels of the EMT-related transcription factors Slug and Vimentin showed a decrease. In conclusion, CSGP inhibits the EMT, thereby suppressing the malignant progression of TNBC.


Assuntos
Apoptose , Proliferação de Células , Medicamentos de Ervas Chinesas , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pós/química , Caderinas/genética , Caderinas/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-39099309

RESUMO

Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.

16.
Front Immunol ; 15: 1447280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211043

RESUMO

Triple-negative breast cancer (TNBC) represents a major therapeutic challenge due to its heterogeneous and aggressive phenotype, and limited target-specific treatment options. The trophoblast cell surface antigen (Trop-2), a transmembrane glycoprotein overexpressed in various cancers, has emerged as a promising target for TNBC. Sacituzumab govitecan (SG), an antibody-drug conjugate (ADC) that targets Trop-2, has recently entered treatment algorithms for advanced and metastatic TNBC, independently from Trop-2 expression status, with manageable toxicity. Despite the impressive results, questions remain unsolved regarding its efficacy, safety profile, and Trop-2 biological role in cancer. Currently, Trop-2 cannot be designated as a predictive biomarker in SG treatment, albeit its expression correlates with disease outcome, yet its levels are not uniform across all TNBCs. Additionally, data regarding Trop-2 expression variations in primary and metastatic sites, and its interplay with other biomarkers are still ambiguous but mandatory in light of future applications of SG in other indications and settings. This poses the questions of a careful evaluation of the efficacy and toxicity profile of SG in such early stages of disease, and in personalized and combinatorial strategies. Research and clinical data are mandatory to address SG drawbacks and minimize its benefits, to realize its full potential as therapeutic agent in different epithelial tumors.


Assuntos
Anticorpos Monoclonais Humanizados , Antígenos de Neoplasias , Camptotecina , Moléculas de Adesão Celular , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Camptotecina/análogos & derivados , Camptotecina/uso terapêutico , Camptotecina/efeitos adversos , Feminino , Imunoconjugados/uso terapêutico , Imunoconjugados/efeitos adversos , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/metabolismo , Biomarcadores Tumorais , Animais , Pesquisa Translacional Biomédica
17.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123391

RESUMO

c-MYC is overexpressed in 70% of human cancers, including triple-negative breast cancer (TNBC), yet there is no clinically approved drug that directly targets it. Here, we engineered the mRNA-stabilizing poly U sequences within the 3'UTR of c-MYC to specifically destabilize and promote the degradation of c-MYC transcripts. Interestingly, the engineered derivative outcompetes the endogenous overexpressed c-MYC mRNA, leading to reduced c-MYC mRNA and protein levels. The iron oxide nanocages (IO-nanocages) complexed with MYC-destabilizing constructs inhibited primary and metastatic tumors in mice bearing TNBC and significantly prolonged survival by degrading the c-MYC-STAT5A/B-PD-L1 complexes that drive c-MYC-positive TNBC. Taken together, we have described a novel therapy for c-MYC-driven TNBC and uncovered c-MYC-STAT5A/B-PD-L1 interaction as the target.

18.
AAPS J ; 26(5): 91, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107504

RESUMO

Repurposing drugs offers several advantages, including reduced time and cost compared to developing new drugs from scratch. It leverages existing knowledge about drug safety, dosage, and pharmacokinetics, expediting the process of clinical trials and regulatory approval. Dihydroartemisinin (DHA) is a semi-synthetic and active metabolite of all artemisinin molecules and is FDA-approved for the treatment of malaria. Apart from having anti-malarial properties, DHA also possesses anticancer properties. However, its pharmacological actions are limited by toxicity and solubility problems. To overcome these challenges and enhance its anticancer effectiveness, we designed an exosomal formulation of DHA. We isolated exosomes from bovine milk using differential ultracentrifugation and loaded DHA using sonication. Scanning and transition electron microscopy revealed a size of roughly 100 nm, with a spherical shape. Furthermore, in pH 7.4 and 5.5, the exosomes exhibited burst release followed by sustained release. Multiple in vitro cell culture tests demonstrated that Exo-DHA exhibited enhanced anticancer activity, including cytotoxicity, cellular uptake, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, and inhibition of colony formation. Additional evidence supporting Exo-DHA's anti-migration ability came from transwell migration and scratch assays. Based on these results, it was concluded that the anticancer efficacy of DHA was improved when loaded into bovine milk-derived exosomes. While the in vitro results are encouraging, more in vivo testing in suitable animal models and biochemical marker analysis are warranted.


Assuntos
Antineoplásicos , Artemisininas , Exossomos , Leite , Neoplasias de Mama Triplo Negativas , Artemisininas/farmacologia , Artemisininas/administração & dosagem , Artemisininas/química , Animais , Leite/química , Bovinos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Espécies Reativas de Oxigênio/metabolismo , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
20.
Med Oncol ; 41(9): 222, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120634

RESUMO

Breast cancer (BC) is a significant cause of cancer-related mortality, and triple-negative breast cancer (TNBC) is a particularly aggressive subtype associated with high mortality rates, especially among younger females. TNBC poses a considerable clinical challenge due to its aggressive tumor behavior and limited therapeutic options. Aberrations within the PI3K/AKT pathway are prevalent in TNBC and correlate with increased therapeutic intervention resistance and poor outcomes. MicroRNAs (miRs) have emerged as crucial PI3K/AKT pathway regulators influencing various cellular processes involved in TNBC pathogenesis. The levels of miRs, including miR-193, miR-4649-5p, and miR-449a, undergo notable changes in TNBC tumor tissues, emphasizing their significance in cancer biology. This review explored the intricate interplay between miR variants and PI3K/AKT signaling in TNBC. The review focused on the molecular mechanisms underlying miR-mediated dysregulation of this pathway and highlighted specific miRs and their targets. In addition, we explore the clinical implications of miR dysregulation in TNBC, particularly its correlation with TNBC prognosis and therapeutic resistance. Elucidating the roles of miRs in modulating the PI3K/AKT signaling pathway will enhance our understanding of TNBC biology and unveil potential therapeutic targets. This comprehensive review aims to discuss current knowledge and open promising avenues for future research, ultimately facilitating the development of precise and effective treatments for patients with TNBC.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Feminino , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA