Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3189-3200, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319733

RESUMO

Ganoderma lucidum is a precious fungus with both edible and medicinal values and has a long history of medical use. Triterpenes as the main active components endow G. lucidum with anti-tumor, antioxidant, and other pharmacological activities. The present study endeavors to establish a proficient liquid-state fermentation technology for the enhanced production of triterpenes. In view of the limitations inherent in conventional submerged fermentation and oscillation-static two-stage cultivation, this study established an oscillation-static cycle cultivation process and optimized the cultivation conditions by building an artificial neural network model based on genetic algorithms. The cultivation conditions for the high-yield production of triterpenes were optimized as follows: 2.8 days of oscillation, 7.3 days of static cultivation, 0.2 day of oscillation, and 0.3 day of static cultivation. Under these conditions, the content of triterpenes reached 20.82 mg/g. The yield of triterpenes reached 129.09 mg/L, showing a remarkable increase of 324.78% compared with that of the Z10J0 method. Moreover, the established method shortened the cultivation cycle by 10.6 days. The mycelia cultivated under this regimen exhibited commendable anti-tumor and antioxidant activities. This study not only presents an economical liquid-state fermentation approach but also streamlines the fermentation flow, reduces fermentation duration, and effectively ameliorates drawbacks associated with conventional cultivation methods. In addition, this study gives valuable insights into the scaled application of liquid-state fermentation in the high-yield production of triterpenes, which showcases broad prospects.


Assuntos
Fermentação , Micélio , Reishi , Triterpenos , Triterpenos/metabolismo , Reishi/metabolismo , Reishi/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Redes Neurais de Computação
2.
3 Biotech ; 14(10): 235, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39310034

RESUMO

The in vitro cultures of Vachellia farnesiana (L) Wight & Arn. have demonstrated cytotoxic activity through callus extract on the HeLa cell line. Explants excised from in vitro-grown seedlings from seeds of two different locations were inoculated on Murashige and Skoog (MS) culture media containing various concentrations of N-6 benzyladenine (BA) or kinetin with 2,4-dichlorophenoxyacetic acid (2,4-D). Optimal efficiency in friable callus induction (100%) was achieved in leaf explants cultured on MS media containing 2.32 µM BA + 13.57 µM 2,4-D. Plant tissues (callus and leaf) were extracted and subjected to quantitative phytochemical analysis, revealing the highest total alkaloid and phenolic content in leaf extracts from Queretaro adult specimens (339.5 ± 20.9 mg atropine equivalents (AE) per g dry extract (DE) and 158.4 ± 12.5 mg gallic acid equivalents (GAE) per g DE, respectively). In contrast, callus cultures exhibited significantly higher total triterpene content (356-381 mg ursolic acid equivalents (UAE) per g DE) compared to leaf extracts (208-243 mg UAE/g DE). Both leaf and callus extracts displayed cytotoxic activity against the HeLa cell line, with a significantly lower half-maximal inhibitory concentration (IC50) for leaf extracts (28-32 µg/mL) compared to callus cultures (43-66 µg/mL), suggesting that alkaloids were primarily responsible for the cytotoxic activity. Furthermore, this study provides valuable insights into the controlled production of bioactive compounds with cytotoxic activity, with callus serving as a rich source.

3.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339286

RESUMO

Oleanolic acid, a naturally occurring triterpenoid compound, has garnered significant attention in the scientific community due to its diverse pharmacological properties. Continuing our previous work on the synthesis of oleanolic acid dimers (OADs), a simple, economical, and safe acetylation reaction was performed. The newly obtained derivatives (AcOADs, 3a-3n) were purified using two methods. The structures of all acetylated dimers (3a-3n) were determined based on spectral methods (IR, NMR). For all AcOADs (3a-3n), the relationship between the structure and the expected directions of pharmacological activity was determined using a computational method (QSAR computational analysis). All dimers were also tested for their cytotoxic activity on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines. HDF cell line was applied to evaluate the Selectivity Index of the tested compounds. All cytotoxic tests were performed with the application of the MTT assay. Finally, all dimers of oleanolic acid were subjected to DPPH and CUPRAC tests to evaluate their antioxidant activity. The obtained results indicate a very high level of cytotoxic activity (IC50 for most AcOADs below 5.00 µM) and a fairly high level of antioxidant activity (Trolox equivalent in some cases above 0.04 mg/mL).


Assuntos
Ácido Oleanólico , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/síntese química , Humanos , Acetilação , Linhagem Celular Tumoral , Relação Quantitativa Estrutura-Atividade , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Dimerização , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Citotoxinas/farmacologia , Citotoxinas/química , Citotoxinas/síntese química
4.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339362

RESUMO

High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.


Assuntos
Produtos Finais de Glicação Avançada , Olea , Extratos Vegetais , Folhas de Planta , Soroalbumina Bovina , Olea/química , Folhas de Planta/química , Produtos Finais de Glicação Avançada/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glicosilação/efeitos dos fármacos , Soroalbumina Bovina/química , Animais , Polifenóis/farmacologia , Polifenóis/química , Glucose/metabolismo , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/química , Triterpenos/farmacologia , Triterpenos/química
5.
Heliyon ; 10(17): e37037, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281427

RESUMO

Food plant diversity in bioactive compounds makes them an exploitable resource in the search for effective natural products to prevent or treat viral infections. Therefore, in the framework aimed at studying the antiviral properties of extractive mixtures from fruits (and their waste) grown in the Campania Region (Italy), jujube drupes (Zizyphus jujuba Mill.) were our focus. The drupes were dissected into their peel, pulp and seed parts, each of which was extracted by ultrasound-assisted maceration and further fractionated, thus obtaining, beyond the sugar fraction, a polyphenolic fraction and a lipid fraction. UHPLC-HR MS/MS tools highlighted that the polyphenolic component of the seed was strongly dissimilar from that of the edible parts, being constituted by swertisin and its derivatives. Moreover, the peel mostly accounted for triglycosylated flavonols, whereas the pulp was rich in volatile aromatic glycosides. Among lipids, p-coumaroyl triterpenes mainly characterized the peel. All fractions were screened for their cytotoxicity, and non-toxic concentrations of each extract were tested against herpes simplex virus type 1 (HSV-1) by plaque assays. Molecular tests and Western blot analyses were also carried out. The jujube mixtures, in detail the peel and pulp polyphenolic fractions, and peel lipophilic fraction (the latter enriched mainly in ursane-type triterpenes), showed a marked inhibitory activity against HSV-1 acting in the early stages of viral infection and preventing attachment of the virus to the host cell. The acquired data suggest jujube active mixtures as promising candidates for the prevention and treatment of herpetic lesions.

6.
Nat Prod Res ; : 1-8, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262151

RESUMO

Products derived from the latex of Euphorbia tirucalli were obtained through hydrolysis and column chromatography, resulting in products rich in triterpenes, ingenol 3-esters (I3E), and other derivatives from hydrolysed latex. These products underwent evaluation for their cytotoxic activity against gastric adenocarcinoma cells (AGS). Triterpene derivatives were synthesised, and the selectivity of each product was assessed. The results were compared with the previously described crude latex. Triterpenes and I3E were analysed in silico for their affinity with the active site of PKCδC1b. The hydrolysed latex (free of I3E) exhibited high cytotoxicity, albeit with reduced selectivity. Triterpenes and acetylated triterpenes were more cytotoxic than I3E, although the latter showed greater selectivity. Euphol benzoates and cinnamates showed no cytotoxicity. I3E demonstrated high affinity for the PKCδC1b. In summary, triterpenes exhibited higher cytotoxicity against AGS cells, while I3E displayed greater selectivity. Hydrolysed latex shows promise as a potential candidate for future gastric cancer treatment.

7.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273562

RESUMO

Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This study aims to isolate and characterise pentacyclic triterpenoid compounds from M. flexuosa and to evaluate their therapeutic potential. Using various chromatographic and spectroscopic techniques including Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), three pentacyclic triterpenoid compounds were successfully isolated. Among them, compound 1 (3,11-dioxours-12-en-28-oic acid) exhibited notable bioactivity, significantly inhibiting the activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) (IC50 = 7.39-8.11 µM) and of Nitric Oxide (NO) (IC50 = 4.75-6.59 µM), both of which are key processes in inflammation. Additionally, compound 1 demonstrated potent antioxidant properties by activating the antioxidant enzyme Superoxide Dismutase (SOD) (EC50 = 1.87 µM) and the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (EC50 = 243-547.59 nM), thus showing its potential in combating oxidative stress. This study is the first to isolate and characterise the three compounds from M. flexuosa, suggesting that compound 1 could be a promising candidate for the development of safer and more effective therapies for inflammatory and oxidative stress-related diseases.


Assuntos
Anti-Inflamatórios , Antioxidantes , Triterpenos Pentacíclicos , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Animais , Camundongos , Células RAW 264.7 , Óxido Nítrico/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125028

RESUMO

The presented work aimed to explore the potential of oleanolic acid dimers (OADs): their cytostatic and antioxidant activities, molecular docking, pharmacokinetics, and ADMETox profile. The cytostatic properties of oleanolic acid (1) and its 14 synthesised dimers (2a-2n) were evaluated against 10 tumour types and expressed as IC50 values. Molecular docking was performed with the CB-Dock2 server. Antioxidant properties were evaluated with the CUPRAC method. ADMETox properties were evaluated with the ADMETlab Manual (2.0) database. The results indicate that the obtained OADs can be effective cytostatic agents, for which the IC50 not exceeded 10.00 for many tested cancer cell lines. All OADs were much more active against all cell lines than the mother compound (1). All dimers can inhibit the interaction between the 1MP8 protein and cellular proteins with the best results for compounds 2f and 2g with unsaturated bonds within the linker. An additional advantage of the tested OADs was a high level of antioxidant activity, with Trolox equivalent for OADs 2c, 2d, 2g-2j, 2l, and 2m of approximately 0.04 mg/mL, and beneficial pharmacokinetics and ADMETox properties. The differences in the DPPH and CUPRAC assay results obtained for OADs may indicate that these compounds may be effective antioxidants against different radicals.


Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Ácido Oleanólico , Antioxidantes/química , Antioxidantes/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Humanos , Linhagem Celular Tumoral , Dimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
9.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061845

RESUMO

Olea europaea L. is the most valuable species of the Olea type, and its products offer a wide range of therapeutical uses. The olive tree has been extensively studied for its nourishing qualities, and the "Mediterranean diet", which includes virgin olive oil as a key dietary component, is strongly associated with a reduced risk of cardiovascular disease and various malignancies. Olive leaves, a by-product in the olive harvesting process, are valued as a resource for developing novel phytomedicines. For this purpose, two ethanolic extracts obtained from Olivae folium from Spain (OFS) and Greece (OFG) were investigated. Our findings contribute to a wider characterization of olive leaves. Both extracts displayed important amounts of phenolic compounds and pentacyclic triterpenes, OFG having higher concentrations of both polyphenols, such as oleuropein and lutein, as well as triterpenes, such as oleanolic acid and maslinic acid. The antioxidant capacity is similar for the two extracts, albeit slightly higher for OFG, possibly due to metal polyphenol complexes with antioxidant activity. The extracts elicited an antimicrobial effect at higher doses, especially against Gram-positive bacteria, such as Streptococcus pyogenes. The extract with lower inorganic content and higher content of polyphenols and triterpenic acids induced a strong anti-radical capacity, a selective cytotoxic effect, as well as antimigratory potential on A375 melanoma cells and antiangiogenic potential on the CAM. No irritability and a good tolerability were noted after evaluating the extracts on the in vivo Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Therefore, the present data are suggestive for the possible use of the two types of olive leaf products as high-antioxidant extracts, potentially impacting the healthcare system through their use as antimicrobial agents and as anticancer and anti-invasion treatments for melanoma.

10.
Eur J Med Chem ; 276: 116619, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981335

RESUMO

The pentacyclic triterpenes represent a significant class of plant bioactives with a variety of structures and a wide array of biological activities. These are biosynthetically produced via the mevalonate pathway although occasionally mixed pathways may also occur to introduce structural divergence. Oleanolic acid is one of the most explored bioactive from this class of compounds and possesses a broad spectrum of pharmacological and biological activities including liver protection, anti-cancer, atherosclerosis, anti-inflammation, antibacterial, anti-HIV, anti-oxidative, anti-diabetic etc. This review provides an overview of the latest research findings, highlighting the versatile medicinal and biological potential of oleanolic and its future prospects.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Humanos , Animais , Estrutura Molecular
11.
Bioorg Med Chem Lett ; 111: 129904, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069105

RESUMO

During the search for protein tyrosine phosphatase 1B (PTP1B) inhibitory compounds from the natural resources, two new serratane triterpenes, 3-O-dihydro-p-coumaroyltohogenol (1) and 21-O-acetyltohogenol (2), along with four known serratane triterpenes (3-6), were isolated from the whole plant of Huperzia serrata. The chemical structures of compounds 1 and 2 were determined by NMR study, HRMS analysis, and chemical modification. All isolates were evaluated for their PTP1B inhibitory activities. Among the isolates, compounds 1, 3, 5 and 6 exhibit moderate inhibitory activities against PTP1B. Kinetic studies demonstrated that they are competitive inhibitors. Molecular docking studies support these experimental results by showing that compounds 1, 3, 5 and 6 interact with the active site of PTP1B, clarifying the structure-activity relationship. This study suggests that serratane triterpenes from H. serrata have potential as starting skeletons for anti-diabetes or anti-obesity agents.


Assuntos
Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Triterpenos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000101

RESUMO

The present work aimed to obtain a set of oleanolic acid derivatives with a high level of cytotoxic and antioxidant activities and a low level of toxicity by applying an economical method. Oleanolic acid was alkylated with α,ω-dihalogenoalkane/α,ω-dihalogenoalkene to obtain 14 derivatives of dimer structure. All of the newly obtained compounds were subjected to QSAR computational analysis to evaluate the probability of the occurrence of different types of pharmacological activities depending on the structure of the analysed compound. All dimers were tested for cytotoxicity activity and antioxidant potential. The cytotoxicity was tested on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines with the application of the MTT assay. The HDF cell line was applied to evaluate the tested compounds' Selectivity Index. The antioxidant test was performed with a DPPH assay. Almost all triterpene dimers showed a high level of cytotoxic activity towards selected cancer cell lines, with an IC50 value below 10 µM. The synthesised derivatives of oleanolic acid exhibited varying degrees of antioxidant activity, surpassing that of the natural compound in several instances. Employing the DPPH assay, compounds 2a, 2b, and 2f emerged as promising candidates, demonstrating significantly higher Trolox equivalents and highlighting their potential for pharmaceutical and nutraceutical applications. Joining two oleanolic acid residues through their C-17 carboxyl group using α,ω-dihalogenoalkanes/α,ω-dihalogenoalkenes resulted in the synthesis of highly potent cytotoxic agents with favourable SIs and high levels of antioxidant activity.


Assuntos
Antineoplásicos , Antioxidantes , Ácido Oleanólico , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Dimerização , Sobrevivência Celular/efeitos dos fármacos
13.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000410

RESUMO

Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.


Assuntos
Acetilcolinesterase , Domínio Catalítico , Inibidores da Colinesterase , Desenho de Fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Humanos , Doença de Alzheimer/tratamento farmacológico , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Ânions/química , Animais
14.
Arch Pharm Res ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048758

RESUMO

Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.

15.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065741

RESUMO

Panama boasts an expansive mangrove area and stands as one of the most biodiverse countries in America. While mangrove plants have long been utilized in traditional medicine, there are still unstudied species whose potential medicinal applications remain unknown. This study aimed to extract bioactive compounds from Mora oleifera (Triana ex Hemsl.) Ducke, an understudied mangrove species. Through bioassay-guided fractionation of the crude extract, we isolated seven active compounds identified as lupenone (1), lupeol (2), α-amyrin (3), ß-amyrin (4), palmitic acid (5), sitosterol (6), and stigmasterol (7). Compound structures were determined using spectroscopic analyses, including APCI-HR-MS and NMR. Compounds 1-7 displayed concentration-dependent inhibition of the alpha-glucosidase enzyme, with IC50 values of 0.72, 1.05, 2.13, 1.22, 240.20, 18.70, and 163.10 µM, respectively. Their inhibitory activity surpassed acarbose, the positive control (IC50 241.6 µM). Kinetic analysis revealed that all compounds acted as competitive inhibitors. Docking analysis predicted that all triterpenes bonded to the same site as acarbose in human intestinal alpha-glucosidase (PDB: 3TOP). A complementary metabolomic analysis of M. oleifera active fractions revealed the presence of 64 compounds, shedding new light on the plant's chemical composition. These findings suggest that M. oleifera holds promise as a valuable botanical source for developing compounds for managing blood sugar levels in individuals with diabetes.

16.
In Vitro Cell Dev Biol Anim ; 60(8): 853-867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992216

RESUMO

Combretum leprosum Mart. is a plant of the Combretaceae family, widely distributed in the Northeast region of Brazil, popularly used as an anti-inflammatory agent, and rich in triterpenes. This study evaluated in vitro and in silico potential osteogenic of two semisynthetic triterpenes (CL-P2 and CL-P2A) obtained from the pentacyclic triterpene 3ß,6ß,16ß-trihydroxylup-20(29)-ene (CL-1) isolated from C. leprosum. Assays were carried out in cultured murine osteoblasts (OFCOL II), first investigating the possible toxicity of the compounds on these cells through viability assays (MTT). Cell proliferation and activation were investigated by immunohistochemical evaluation of Ki-67, bone alkaline phosphatase (ALP) activity, and mineralization test by Von Kossa. Molecular docking analysis was performed to predict the binding affinity of CL-P2 and CL-P2A to target proteins involved in the regulation of osteogenesis, including: bone morphogenetic protein 2 (BMP-2), proteins related to Wingless-related integration (WNT) pathway (Low-density lipoprotein receptor-related protein 6-LRP6 and sclerostin-SOST), and receptor activator of nuclear factor (NF)-kB-ligand (RANK-L). Next, Western Blot and immunofluorescence investigated BMP-2, WNT, RANK-L, and OPG protein expressions in cultured murine osteoblasts (OFCOL II). None of the CL-P2 and CL-P2A concentrations were toxic to osteoblasts. Increased cell proliferation, ALP activity, and bone mineralization were observed. Molecular docking assays demonstrated interactions with BMP-2, LRP6, SOST, and RANK-L/OPG. There was observed increased expression of BMP-2, WNT, and RANK-L/OPG proteins. These results suggest, for the first time, the osteogenic potential of CL-P2 and CL-P2A.


Assuntos
Proteína Morfogenética Óssea 2 , Proliferação de Células , Simulação de Acoplamento Molecular , Osteoblastos , Osteogênese , Triterpenos , Animais , Osteogênese/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/química , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ligante RANK/metabolismo , Simulação por Computador , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfatase Alcalina/metabolismo , Sobrevivência Celular/efeitos dos fármacos
17.
Nat Prod Res ; : 1-7, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824635

RESUMO

Thyme is a commercial spice widely used in food, cosmetics, and pharmaceutical industries. Three popular genera in food and traditional medicine, including Zataria Boiss., Thymus L., and Ziziphora L., are considered as thyme-like plants in Iran. Thyme has been standardised based on phenolic monoterpenes, which are abundant in the essential oils of these three genera. Apart from monoterpenes, the flavonoid naringenin, the triterpene oleanolic acid, and phytosterols such as ß-sitosterol were abundant in Zataria, Thymus, and Ziziphora samples, respectively. Therefore, employing current analytical techniques on the basis of thymol and carvacrol may be insufficient to differentiate Thymus spp from similar medicinal plants including Zataria and Ziziphora spp. In this study, we applied NMR-based metabolomics using multivariate analyses to develop quality control of thyme and their similar products. Our findings revealed that NMR-based metabolomics can be a useful approach in differentiating Zataria, Thymus, and Ziziphora.

18.
Heliyon ; 10(11): e32239, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882362

RESUMO

This study proposes a novel colorimetric method based on the ultraviolet/visible spectrophotometry-colorimetric method (UV/Vis-CM) for detecting and quantifying total triterpenoids in traditional Chinese medicine. By incorporating the colourants 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid, triterpenoid compounds colour development became more sensitive, and the detection accuracy was significantly improved. 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid were incorporated in a 1:3 vol ratio at room temperature to react with the total triterpenes for 25 min, incorporated to an ice bath for 5 min, and then detected at the optimal absorption wavelength. The accuracy and reliability of this method were verified by comparison with high-performance liquid chromatography and four other colorimetric methods. Additionally, this approach has the advantages of not requiring heating during operation, high sensitivity, short usage time, low solvent usage, and low equipment costs. This study not only offers a reliable method for detecting total triterpenes in traditional Chinese medicine but also offers a rapid detection tool for on-site testing and large-scale screening, laying a foundation for the modernization of traditional Chinese medicine research, quality control, and drug development.

19.
Fitoterapia ; 176: 106045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823597

RESUMO

Notoginseng leaf triterpenes (PNGL), derived from the dried stems and leaves of P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in vivo and in vitro of ischemic stroke. However, its impact on neurological restoration specifically in relation to angiogenesis following ischemic stroke remains unexplored. The aim of this study was to assess the effects of PNGL on angiogenesis subsequent to ischemic stroke. Male Sprague-Dawley rats were utilized in this study and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, PNGL were administered through intraperitoneal (i.p.) injection. The high-performance liquid chromatography (HPLC) fingerprinting, triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, network pharmacology and western blot analyses were assessed to determine the therapeutical effect and molecular mechanisms of PNGL on cerebral ischemia/reperfusion injury. Our findings demonstrate that PNGL effectively reduced infarct volume, enhanced cerebral blood flow, and induced angiogenesis in rats subjected to MCAO/R. Notably, PNGL also facilitated neuronal proliferation and migration in HUMECs in vitro. The proangiogenic effects of PNGL were found to be linked to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis, as well as the activation of neurological function. Our study provides evidence that PNGL hold promise as an active ingredient of inducing proangiogenic effects, potentially through the activation of the Nrf2 pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis. These findings contribute to the understanding of novel mechanisms involved in the restoration of neurological function following PNGL treatment for ischemic stroke.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Panax notoginseng , Folhas de Planta , Ratos Sprague-Dawley , Sirtuína 1 , Triterpenos , Animais , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sirtuína 1/metabolismo , AVC Isquêmico/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Panax notoginseng/química , Folhas de Planta/química , Humanos , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , China , Traumatismo por Reperfusão/tratamento farmacológico , Indutores da Angiogênese/farmacologia , Angiogênese
20.
Pharmaceuticals (Basel) ; 17(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38931361

RESUMO

Recently, there has been great interest in plant-derived compounds known as phytochemicals. The pentacyclic oleanane-, ursane-, and lupane-type triterpenes are phytochemicals that exert significant activity against diseases like cancer. Lung cancer is the leading cause of cancer-related death worldwide. Although chemotherapy is the treatment of choice for lung cancer, its effectiveness is hampered by the dose-limiting toxic effects and chemoresistance. Herein, we investigated six pentacyclic triterpenes, oleanolic acid, ursolic acid, asiatic acid, betulinic acid, betulin, and lupeol, on NSCLC A549 cells. These triterpenes have several structural variations that can influence the activation/inactivation of key cellular pathways. From our results, we determined that most of these triterpenes induced apoptosis, S-phase and G2/M-phase cycle arrest, the downregulation of ribonucleotide reductase (RR), reactive oxygen species, and caspase 3 activation. For chemoresistance markers, we found that most triterpenes downregulated the expression of MAPK/PI3K, STAT3, and PDL1. In contrast, UrA and AsA also induced DNA damage and autophagy. Then, we theoretically determined other possible molecular targets of these triterpenes using the online database ChEMBL. The results showed that even slight structural changes in these triterpenes can influence the cellular response. This study opens up promising perspectives for further research on the pharmaceutical role of phytochemical triterpenoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA