Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Acta Trop ; 258: 107331, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059714

RESUMO

Although several primers targeted to the internal transcribed-spacer 1 (ITS1) of the ribosomal DNA (rDNA) have been designed to improve the detection of African trypanosomes, no study tried to compare their agreement level and ability to amplify different trypanosome species in tsetse flies and mammals in various epidemiological settings. This study was designed to fill this gap, by targeting tsetse-infested areas of Cameroon. For this, archived DNA samples reporting at-least one trypanosome species with species-specific PCR primers were reviewed. Ten sets of primers targeting different ITS1 rDNA sequences of trypanosomes were selected for assessment using single-round and nested-PCR method. Amplification rates (sensitivity) and agreement level of different ITS1 assays were compared using Cohen's-Kappa and McNemar's x2 statistic. Little agreement level (k = 0.05-0.52) were observed between different ITS1-primers PCRs detection of African trypanosome species despite significant (X2=54.3, p = 0.0001) high amplification rate 91.6 % (339/370). This sensitivity varied from quite low for T. simiae (11.9 %) and T. vivax (27.3 %) to fairly good for T. congolence (51.9 %), Trypanozoon (32.4 %) and T. theileri (40.3 %). Primers set targeting ITS1-A sequence of trypanosome species recorded the highest sensitivity (50.5 %) with fairly good agreement compared to 39.2 % for ITS1-C (k = 0.52), 32.4 % for ITS1-R (k = 0.47), 29.7 % for ITS1-N (k = 0.48) and 23.0 % for ITS1-KIN (k = 0.43) respectively. This study revealed a diversity in the sensitivity of different trypanosome species with different sets of ITS-primers enhancing the need to use the same sets of primers in different bio-ecological settings. The use of nested-PCR instead of single-round PCR enabled improvement of trypanosome infections detection in both tsetse and mammals. Among the sets of ITS1-primers tested, those designed by to amplify ITS1-A can be considered as the most appropriate for the detection of trypanosome infections in mammals and tsetse flies.

2.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990950

RESUMO

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Assuntos
Regiões 3' não Traduzidas , Estágios do Ciclo de Vida , Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estágios do Ciclo de Vida/genética , Regiões 3' não Traduzidas/genética , Animais , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Poli A/genética , Poliadenilação
3.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734633

RESUMO

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Assuntos
Tecido Adiposo , Doenças das Cabras , Cabras , Pele , Trypanosoma , Tripanossomíase Africana , Animais , Cabras/parasitologia , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Tecido Adiposo/parasitologia , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Trypanosoma/classificação , Pele/parasitologia , Ovinos/parasitologia , Doenças das Cabras/parasitologia , Bovinos , Reação em Cadeia da Polimerase , Doenças dos Ovinos/parasitologia , DNA de Protozoário/genética , Doenças dos Bovinos/parasitologia
4.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655765

RESUMO

African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.


Assuntos
Complemento C3b , Complemento C3b/metabolismo , Humanos , Ligação Proteica , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Microscopia Crioeletrônica , Sítios de Ligação , Complemento C3/metabolismo , Complemento C3/imunologia
6.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38623843

RESUMO

Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Inflamassomos/metabolismo , Inflamassomos/imunologia , Animais , Doenças Parasitárias/imunologia , Doenças Parasitárias/parasitologia , Doenças Parasitárias/metabolismo , Imunidade Inata
7.
Res Vet Sci ; 171: 105227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513458

RESUMO

African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase Bovina , Tripanossomíase , Moscas Tsé-Tsé , Bovinos , Animais , Estudos Transversais , Etiópia/epidemiologia , Moscas Tsé-Tsé/parasitologia , Insetos Vetores , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/parasitologia , Tripanossomíase/veterinária , Prevalência , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Doenças dos Bovinos/epidemiologia
8.
Parasite ; 31: 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450717

RESUMO

African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2-26.5) in 2009 to 0% in 2017-2022 in block 1, and from 92.9% (95%CI: 88.2-97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis.


Title: Trypanosomose animale éliminée dans une importante région de production d'élevage au Sénégal suite à l'éradication d'une population de glossines. Abstract: La trypanosomose animale africaine (TAA) était l'une des principales contraintes pathologiques au développement de systèmes de production animale intensifs dans les Niayes du Sénégal, une bande de terre large de 30 km longeant la côte entre Dakar et Saint-Louis. Pour surmonter cette contrainte, le Gouvernement du Sénégal a lancé un programme de lutte intégrée à l'échelle de la zone combinant lutte chimique et technique de l'insecte stérile pour éradiquer une population de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae). Le projet a été mis en œuvre selon une approche conditionnelle progressive, et la zone cible a été divisée en trois blocs, traités de manière séquentielle. L'objectif de cette étude était d'évaluer la dynamique temporelle de la prévalence de Trypanosoma spp. au cours de la mise en œuvre du programme. Entre 2009 et 2022, 4 359 échantillons de sang ont été prélevés sur des bovins et ont fait l'objet d'un dépistage des trypanosomes à l'aide des techniques du buffy-coat et ELISA, ainsi que de test PCR depuis 2020. Dans le bloc 1, la séroprévalence est passée de 18,9 % (IC 95 % : 11,2­26,5) en 2009 à 0 % entre 2017­2022 et de 92,9 % (IC 95 % : 88,2-97) en 2010 à 0 % en 2021 pour le block 2. Les données parasitologiques et sérologiques confirment les résultats du suivi entomologique selon lesquels il est très probable que la population de Glossina palpalis gambiensis soit éradiquée des Niayes, et que la transmission de la TAA a été interrompue dans la zone traitée. Elles indiquent l'efficacité de l'approche adoptée, et montrent que la TAA peut être durablement éliminée grâce à la création d'une zone exempte de G. p. gambiensis.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase , Animais , Bovinos , Gado , Senegal/epidemiologia , Estudos Soroepidemiológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária
9.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311179

RESUMO

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Assuntos
Leishmania donovani , Estresse Oxidativo , Peroxidases , Proteínas de Protozoários , Animais , Peróxido de Hidrogênio/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Domínios PR-SET
10.
Biomolecules ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38254667

RESUMO

Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1's functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.


Assuntos
RNA Longo não Codificante , Telômero , Animais , Telômero/genética , Epigenômica , Eucariotos , Mamíferos
11.
Biochem Pharmacol ; 219: 115937, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995979

RESUMO

Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.


Assuntos
Trypanosoma brucei brucei , Humanos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ensaios de Triagem em Larga Escala , Edição de RNA , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/metabolismo
12.
Eur J Pharm Sci ; 192: 106668, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065268

RESUMO

African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.


Assuntos
Tripanossomíase Africana , Tripanossomíase , Humanos , Animais , Bovinos , Camundongos , Nitrofurantoína , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Tripanossomíase/tratamento farmacológico , Tripanossomíase/veterinária , Resultado do Tratamento , Etilenoglicóis/uso terapêutico
13.
QJM ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065835

RESUMO

Human African trypanosomiasis (HAT), or sleeping sickness, continues to be a major threat to human health in 36 countries throughout sub-Saharan Africa with up to 60 million people at risk. Over the last decade there have been several advances in this area, some of which are discussed in this overview. Due to the concerted efforts of several bodies, including better identification and treatment of cases and improved tsetse fly vector control, the number of cases of HAT has declined dramatically. The clinical heterogeneity of HAT has also been increasingly recognised and the disease, while usually fatal if untreated or inadequately treated, does not always have a uniformly fatal outcome. Improved methods of HAT diagnosis have now been developed including Rapid Diagnostic Tests (RDTs). Novel drug treatment of HAT has also been developed, notably NECT for late- stage T.b.gambiense, oral fexinidazole for early and the early component of the late-stage of T.b.gambiense, and the new oral compounds of the oxaborole group which have shown considerable promise in field trials. Advances in HAT neuropathogenesis have been steady though largely incremental, with a particular focus on the role of the BBB in parasite entry into the Central Nervous System (CNS), and the relevant importance of both innate and adaptive immunity. While the WHO goal of elimination of HAT as a public health problem by 2020 has probably been achieved, it remains to be seen whether the second more ambitious goal of interruption of transmission of HAT by 2030 will be attained.

14.
Parasitol Res ; 123(1): 10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057596

RESUMO

Fish trypanosomiasis is a common blood parasitic disease transmitted by aquatic invertebrates, such as leeches. This study aims to shed light on the cytotoxicity of Trypanosoma sp. on erythrocytes and its impacts on the innate immune response (serum lysozyme activity, nitric oxide production, phagocytic activity, serum total protein, and globulin) in wild African catfish, Clarias gariepinus. One hundred catfish were examined using blood smears stained with Giemsa and confirmed with PCR. The prevalence of infection was found to be 10% by microscope detection and 15% by PCR. The morphological identification of Trypanosoma as Trypanosoma mukasai was determined. Additionally, this study included previously undescribed features of Trypanosoma, such as the width of the anterior and posterior body, the length of the posterior pale region, and the number of folds. Various alterations in erythrocytes were observed, totaling 54.57%. Nuclear abnormalities, including fragmented nuclei, eccentric nuclei, and micronuclei, were also reported. Infected fish showed a reduction in serum total protein and globulin levels, while nitric oxide production, lysozyme activity, and phagocytic activity exhibited a significant increase compared to non-infected fish. We believe that our findings will contribute valuable data to the morphological and molecular identification of Trypanosoma sp. in African catfish, as well as their cytotoxic impact.


Assuntos
Peixes-Gato , Globulinas , Trypanosoma , Animais , Peixes-Gato/parasitologia , Muramidase , Óxido Nítrico
15.
Microorganisms ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38138050

RESUMO

Trypanosoma dionisii, for which only bat bugs (Cimicidae) had previously been demonstrated as vectors, was, for the first time, detected in the gamasine mite Steatonyssus periblepharus in Russia. The molecular phylogenetic analysis indicated that trypanosomes found in these mites belong to the "clade A" of T. dionisii, which, based on genetic distances, can be considered as a species separate from the sister clade B, and according to available data also has a distinct geographic distribution. The presence of developmental forms of T. dionisii resembling those previously described during the development of this trypanosome in cimicids suggests that S. periblepharus is a novel vector of the studied trypanosome.

16.
Pathogens ; 12(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38003754

RESUMO

Glucose metabolism is critical for the African trypanosome, Trypanosoma brucei, serving as the lone source of ATP production for the bloodstream form (BSF) parasite in the glucose-rich environment of the host blood. Recently, phosphonate inhibitors of human enolase (ENO), the enzyme responsible for the interconversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP) in glycolysis or PEP to 2-PG in gluconeogenesis, have been developed for the treatment of glioblastoma multiforme (GBM). Here, we have tested these agents against T. brucei ENO (TbENO) and found the compounds to be potent enzyme inhibitors and trypanocides. For example, (1-hydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (deoxy-SF2312) was a potent enzyme inhibitor (IC50 value of 0.60 ± 0.23 µM), while a six-membered ring-bearing phosphonate, (1-hydroxy-2-oxopiperidin-3-yl) phosphonic acid (HEX), was less potent (IC50 value of 2.1 ± 1.1 µM). An analog with a larger seven-membered ring, (1-hydroxy-2-oxoazepan-3-yl) phosphonic acid (HEPTA), was not active. Molecular docking simulations revealed that deoxy-SF2312 and HEX had binding affinities of -6.8 and -7.5 kcal/mol, respectively, while the larger HEPTA did not bind as well, with a binding of affinity of -4.8 kcal/mol. None of these compounds were toxic to BSF parasites; however, modification of enzyme-active phosphonates through the addition of pivaloyloxymethyl (POM) groups improved activity against T. brucei, with POM-modified (1,5-dihydroxy-2-oxopyrrolidin-3-yl) phosphonic acid (POMSF) and POMHEX having EC50 values of 0.45 ± 0.10 and 0.61 ± 0.08 µM, respectively. These findings suggest that HEX is a promising lead against T. brucei and that further development of prodrug HEX analogs is warranted.

17.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988471

RESUMO

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Assuntos
Trypanosoma brucei brucei , Estruturas R-Loop , Variação Antigênica/genética , Quebras de DNA , DNA , RNA , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
18.
Parasitology ; 150(13): 1236-1241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37859420

RESUMO

The bumblebee gut parasite, Crithidia bombi, is widespread and prevalent in the field. Its interaction with Bombus spp. is a well-established epidemiological model. It is spread faecal-orally between colonies via the shared use of flowers when foraging. Accurately measuring the level of infection in bumblebees is important for assessing its distribution in the field, and also when conducting epidemiological experiments. Studies generally use 1 of 2 methods for measuring infection. One approach measures infection in faeces whereas the other method measures infection in guts. We tested whether the method of measuring infection affected the estimation of infection. Bumblebees were inoculated with a standardized inoculum and infection was measured 1 week later using either the faecal or gut method. We found that when the gut method was used to measure infection intensity estimates were significantly different to and approximately double those from the faecal method. These results have implications for the interpretation of previous study results and for the planning of future studies. Given the importance of bumblebees as pollinators, the impact of C. bombi on bumblebee health, and its use as an epidemiological model, we call on researchers to move towards consistent quantification of infections to enable future comparisons and meta-analyses of studies.


Assuntos
Parasitos , Abelhas , Animais , Interações Hospedeiro-Parasita , Crithidia , Fezes
19.
Trends Parasitol ; 39(12): 1014-1022, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758633

RESUMO

African trypanosomes show a remarkable ability to survive as extracellular parasites in the blood and tissue spaces of an infected mammal. Throughout the infection they are exposed to the molecules and cells of the immune system, including complement. In this opinion piece, we review decades-worth of evidence about how complement affects African trypanosomes. We highlight the discovery of a trypanosome receptor for complement C3 and we critically assess three recent studies which attempt to provide a structural and mechanistic view of how this receptor helps trypanosomes to survive in the presence of complement.


Assuntos
Trypanosoma , Tripanossomíase Africana , Animais , Tripanossomíase Africana/parasitologia , Mamíferos
20.
RNA ; 29(12): 1881-1895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37730435

RESUMO

Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/genética , Imunoprecipitação , Reação em Cadeia da Polimerase , Polirribossomos/genética , RNA , Proteínas de Protozoários/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA