RESUMO
Aeruginosins are common metabolites of cyanobacteria. In the course of re-isolation of the known aeruginosins KT608A and KT608B for bioassay studies, we isolated three new sulfated aeruginosins, named aeruginosins KT688 (1), KT718 (2), and KT575 (3), from the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The structures of the new compounds were established on the basis of analyses of the 1D and 2D NMR, as well as HRESIMS data. Marfey's method, coupled with HR ESI LCMS and chiral HPLC, was used to establish the absolute configuration of the amino acid and hydroxyphenyl lactic acid residues, respectively. Compounds 1-3 were tested for inhibition of the serine protease trypsin, and compounds 1 and 2 were found to exhibit IC50 values of 2.38 and 1.43 µM, respectively.
Assuntos
Lagos , Microcystis , Microcystis/química , Lagos/microbiologia , Israel , Cromatografia Líquida de Alta Pressão , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química , Tripsina/química , Espectroscopia de Ressonância MagnéticaRESUMO
Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.
Assuntos
Quimotripsina , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Inibidor da Tripsina de Soja de Kunitz , Tripsina , Quimotripsina/antagonistas & inibidores , Quimotripsina/química , Quimotripsina/metabolismo , Glycine max/química , Glycine max/enzimologia , Tripsina/química , Tripsina/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/análise , Inibidor da Tripsina de Soja de Kunitz/análise , Inibidores da Tripsina/análiseRESUMO
Broad-spectrum disease resistance (BSR) is crucial for controlling plant diseases and relies on immune signals that are subject to transcriptional and post-translational regulation. How plants integrate and coordinate these signals remains unclear. We show here that the rice really interesting new gene (RING)-type E3 ubiquitin ligase OsRING113 targets APIP5, a negative regulator of plant immunity and programmed cell death (PCD), for 26S proteasomal degradation. The osring113 mutants in Nipponbare exhibited decreased BSR, while the overexpressing OsRING113 plants showed enhanced BSR against Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, APIP5 directly suppressed the transcription of the Bowman-Birk trypsin inhibitor genes OsBBTI5 and AvrPiz-t-interacting protein 4 (APIP4). Overexpression of these two genes, which are partially required for APIP5-mediated PCD and disease resistance, conferred BSR. OsBBTI5 and APIP4 associated with and stabilized the pathogenesis-related protein OsPR1aL, which promotes M. oryzae resistance. Our results identify an immune module with integrated and coordinated hierarchical regulations that confer BSR in plants.
Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Proteínas de Plantas , Inibidores da Tripsina , Ubiquitina-Proteína Ligases , Xanthomonas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Xanthomonas/patogenicidade , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunidade Vegetal , Plantas Geneticamente Modificadas , MagnaportheRESUMO
Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.
Assuntos
Culinária , Germinação , Lens (Planta) , Valor Nutritivo , Sementes , Lens (Planta)/química , Sementes/química , Sementes/crescimento & desenvolvimento , Ácido Fítico/análise , Ácido Fítico/química , Taninos/análise , Taninos/química , Inibidores da Tripsina/análise , Inibidores da Tripsina/química , Manipulação de AlimentosRESUMO
Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises ß sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 µM/min, Km = 1.1805 × 102 µM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.
Assuntos
Antioxidantes , Dioscorea , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inibidores da Tripsina/farmacologia , Peixe-Zebra , Dioscorea/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Tripsina/metabolismoRESUMO
There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice. We hypothesized that LPS also disrupts the function of the BBB in neonatal mice and that IAIPs attenuate the LPS-induced BBB disruption in male and female neonatal mice. IAIPs were administered to neonatal mice after LPS and BBB permeability quantified with intravenous 14C-sucrose and 99mTc-albumin. Although repeated high doses (3 mg/kg) of LPS in neonates resulted in high mortality rates and a robust increase in BBB permeability, repeated lower doses (1 mg/kg) of LPS resulted in lower mortality rates and disruption of the BBB in both male and female neonates. IAIP treatment attenuated disruption of the BBB similarly to sucrose and albumin after exposure to low-dose LPS in neonatal mice. Exposure to low-dose LPS elevated IAIP concentrations in blood, but it did not appear to increase the systemic levels of Pre-alpha inhibitor (PaI), one of the family members of the IAIPs that contains heavy chain 3. We conclude that IAIPs attenuate LPS-related disruption of the BBB in both male and female neonatal mice.
Assuntos
Barreira Hematoencefálica , Lipopolissacarídeos , Camundongos , Animais , Masculino , Feminino , Humanos , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/toxicidade , Animais Recém-Nascidos , Albuminas/metabolismo , Sacarose/metabolismoRESUMO
Background: Western lifestyle has been associated with an increase in relapsing-remitting multiple sclerosis (RRMS). In mice, dietary wheat amylase-trypsin inhibitors (ATIs) activate intestinal myeloid cells and augment T cell-mediated systemic inflammation. Objective: The aim of this study was to assess whether a wheat- and thus ATI-reduced diet might exert beneficial effects in RRMS patients with modest disease activity. Methods: In this 6-month, crossover, open-label, bicentric proof-of-concept trial, 16 RRMS patients with stable disease course were randomized to either 3 months of a standard wheat-containing diet with consecutive switch to a > 90% wheat-reduced diet, or vice versa. Results: The primary endpoint was negative, as the frequency of circulating pro-inflammatory T cells did not decrease during the ATI-reduced diet. We did, however, observe decreased frequencies of CD14+ CD16++ monocytes and a concomitant increase in CD14++ CD16- monocytes during the wheat-reduced diet interval. This was accompanied by an improvement in pain-related quality of life in health-related quality of life assessed (SF-36). Conclusion: Our results suggest that the wheat- and thus ATI-reduced diet was associated with changes in monocyte subsets and improved pain-related quality of life in RRMS patients. Thus, a wheat (ATI)-reduced diet might be a complementary approach accompanying immunotherapy for some patients. Registration: German Clinical Trial Register (No. DRKS00027967).
RESUMO
The presence of so-called anti-nutritional factors can reduce the bioavailability of nutrients following consumption of seeds which are otherwise an excellent source of proteins, carbohydrates and micronutrients. Among the proteins associated with negative effects on quality in pea (Pisum sativum L.) seeds are lectin, pea albumin 2 (PA2) and trypsin inhibitors (TI). Here we have investigated the impact of these proteins on protein digestibility and amino acid availability, using naturally occurring and derived mutant lines of pea lacking these proteins. The mutations were stacked to generate a triple mutant which was compared with a wild-type progenitor and a line lacking the major seed trypsin inhibitors alone. In vitro digestions following the INFOGEST protocol revealed significant differences in the degree of hydrolysis, protein profile and apparent amino acid availability among the pea variants. Proteins resistant to digestion were identified by MALDI-TOF mass spectrometry and amino acid profiles of digested samples determined. The results indicate that pea seeds lacking certain proteins can be used in the development of novel foods which have improved protein digestibility, and without negative impact on seed protein concentration or yield.
Assuntos
Pisum sativum , Proteínas de Plantas , Proteínas de Plantas/análise , Pisum sativum/genética , Pisum sativum/química , Inibidores da Tripsina/metabolismo , Mutação com Perda de Função , Aminoácidos/metabolismoRESUMO
Trypsin inhibitors (TIs) are widely distributed in plants and are known to play a protective role against herbivores. TIs reduce the biological activity of trypsin, an enzyme involved in the breakdown of many different proteins, by inhibiting the activation and catalytic reactions of proteins. Soybean (Glycine max) contains two major TI classes: Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). Both genes encoding TI inactivate trypsin and chymotrypsin enzymes, which are the main digestive enzymes in the gut fluids of Lepidopteran larvae feeding on soybean. In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. A total of six TIs were tested, including three known soybean trypsin inhibitors (KTI1, KTI2 and KTI3) and three genes encoding novel inhibitors identified in soybean (KTI5, KTI7, and BBI5). Their functional role was further examined by overexpression of the individual TI genes in soybean and Arabidopsis. The endogenous expression patterns of these TI genes varied among soybean tissues, including leaf, stem, seed, and root. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory activities in both transgenic soybean and Arabidopsis. Detached leaf-punch feeding bioassays detected significant reduction in corn earworm (Helicoverpa zea) larval weight when larvae fed on transgenic soybean and Arabidopsis lines, with the greatest reduction observed in KTI7 and BBI5 overexpressing lines. Whole soybean plant greenhouse feeding bioassays with H. zea on KTI7 and BBI5 overexpressing lines resulted in significantly reduced leaf defoliation compared to non-transgenic plants. However, bioassays of KTI7 and BBI5 overexpressing lines with soybean cyst nematode (SCN, Heterodera glycines) showed no differences in SCN female index between transgenic and non-transgenic control plants. There were no significant differences in growth and productivity between transgenic and non-transgenic plants grown in the absence of herbivores to full maturity under greenhouse conditions. The present study provides further insight into the potential applications of TI genes for insect resistance improvement in plants.
RESUMO
In this study, an at-line nanofractionation (ANF) platform was successfully fabricated in parallel with mass spectrometry and trypsin inhibitory bioactivity assessment for rapid screening of trypsin inhibitors (TIs) from natural products for the first time. After systematic optimization, the ANF platform was applied to screen and identify TIs in the extract of a traditional Chinese herb, i.e., Cotinus coggygria Scop. The semi-preparative reverse-phase liquid chromatography was used subsequently to further simplify and enrich the insufficiently separated components. After comprehensive evaluation and validation, the ANF platform successfully identified 12 compounds as potential TIs, including 8 flavonoids and 2 organic acids. Additionally, a comparison study was conducted using two other ligand fishing approaches, i.e., capillary monolithic and magnetic beads-based trypsin-immobilized enzyme microreactors, which successfully identified 8 identical flavonoids as TIs. Importantly, the molecular docking study showed the molecular interactions between enzymes and inhibitors, thus strongly supporting the experimental results. Overall, this work has fully demonstrated the feasibility of the established ANF platform for screening TIs from Cotinus coggygria Scop., and proved its great prospects for screening bioactive components from natural products.
Assuntos
Anacardiaceae , Produtos Biológicos , Cromatografia de Fase Reversa , Inibidores da Tripsina , Tripsina , Simulação de Acoplamento Molecular , Flavonoides/química , Extratos Vegetais/farmacologia , Anacardiaceae/químicaRESUMO
In this study, liquid-liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor-stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by â¼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid-liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.
Assuntos
Inibidor da Tripsina de Soja de Bowman-Birk , Inibidores da Tripsina , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacologia , Inibidor da Tripsina de Soja de Bowman-Birk/química , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/farmacologia , Hexanos , Inibidor da Tripsina de Soja de Kunitz/metabolismo , Inibidor da Tripsina de Soja de Kunitz/farmacologia , Adsorção , EmulsõesRESUMO
BACKGROUND: Faba beans (Vicia faba) experienced a significant revival in cultivation in Western Europe in the last decade. In this study, potential correlations between protein content (PC), trypsin inhibitory activity (TIA), and tannin content were investigated in a large German sample set with bean samples obtained from 50 different farms present in 11 German federal states. Three consecutive cultivation years (2016, 2017, and 2018) were included. RESULTS: The faba bean samples were grown under real cultivation conditions without any specific experimental design and finally marketed by the farmers. This enabled researchers to identify the relationship and extent of the three quality parameters towards the varying cultivation conditions and practices. Moreover, the correlations observed between the parameters were brought into the context of well-known theoretical plant hypotheses such as the carbon-nutrient balance hypothesis (CNBH), the growth-differentiation balance hypothesis (GDBH), as well as the protein competition model (PCM) for evaluating the potential for use in predictions. The study showed a significant negative correlation between PC and tannin content in faba beans over each cultivation year, whereas a positive correlation between TIA and tannin content was found. No clear correlation was observed between PC and TIA. CONCLUSION: The three plant hypotheses (CNBH, GDBH, and PCM) seem to be not fully valid. Nonetheless, these findings might be a useful guideline for predicting the composition of selected compounds, and sustainable recommendations about cultivation and exploitation for the feed and food sector can be derived. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Fabaceae , Vicia faba , Vicia faba/química , Fabaceae/química , Taninos/análise , Proteínas de Soja , Europa (Continente)RESUMO
Wheat amylase-trypsin inhibitors (ATIs) are a family of plant defense proteins with an important role in human health for their involvement in allergies, celiac disease and non-celiac wheat sensitivity. Information about the differences in ATI activities among wheat genotypes and the influence of the growing environment is scarce. Therefore, ten selected wheat accessions with different ploidy level and year of release, previously characterized for their ATI gene sequences, were grown during three consecutive crop years at two growing areas and used for in vitro ATI activities. The contributions of the genotype and the crop year were significant for both activities. The hexaploid wheat genotypes showed the highest inhibitory activities. Einkorn had a peculiar behavior showing the lowest alpha-amylase inhibitory activity, but the highest trypsin inhibitory activity. It was not possible to observe any trend in ATI activities as a function of the release year of the wheat samples. The two inhibitory activities were differently affected by the growing conditions and were negatively correlated with the protein content. This information can be important in understanding the extent of variation of ATI inhibitory properties in relation to the wheat genotype and the growing environment and the impact of ATIs, if any, on human health and nutrition.
RESUMO
Background and aims: A wheat-free diet (WFD) represents the elective treatment for Non-celiac Wheat Sensitivity (NCWS) patients. Preliminary reports have shown a possible better tolerability of ancient grains in these subjects. The aim of this observational study was to evaluate the frequency of consumption of ancient grains and its correlation with clinical manifestations in NCWS patients. Methods: 223 NCWS patients were recruited, and their consumption of ancient grains was monitored. Participants were first administered a modified version of the Pavia/Biagi questionnaire to investigate their adherence to "modern WFD." The appearance/exacerbation of symptoms after ingestion of ancient grains was then assessed with WHO toxicity grading scale. Results: 50.2% of the recruited patients reported consuming ancient grains before NCWS diagnosis; the diagnostic delay in this group was significantly higher than in non-consumers [median (range) 72 (6-612) vs. 60 months (3-684), P = 0.03] and these patients reported lower frequency of constipation (P = 0.04). Of the 107 patients with optimal adherence to modern WFD, 14 reported eating ancient wheat after NCWS diagnosis. Among them, 5 reported milder symptoms than those caused by modern wheat intake and 3 had an excellent tolerability without symptoms. Timilia/Tumminia variety was the most frequently used ancient grain. Conclusions: NCWS patients who consume ancient grains may receive a late diagnosis due to the possible clinical benefit (tolerability) obtained with these grains. Even after diagnosis, 10% of the patients still consumed ancient grains and had mild or no symptoms. Further studies are required to define the pathophysiological mechanism behind their putative greater tolerability.
RESUMO
Cationic cell-penetrating peptides (CPPs), such as transactivator of transcription (TAT) peptide, have been proposed as effective drug carriers to improve intracellular delivery of biological macromolecules. Amphibian skin-derived Kunitz-type trypsin inhibitors (KTIs), short counterparts of KTIs from plant sources, were found to possess potent serine protease inhibitory activity. However, poor transmembrane permeability of these molecules has largely hindered the study of the full spectrum of their biological actions. As a result, this study aimed to extend the biological activities of amphibian KTIs by their conjugation to cationic CPPs. Herein, a novel peptide (kunitzin-OV2) and its phenylalanine-substituted analogue F9-kunitzin-OV2 (F9-KOV2) were evaluated for inhibition of trypsin/chymotrypsin and showed weak antibacterial activity against Escherichia coli (E. coli). As expected, the conjugation to TAT peptide did not increase membrane lysis compared with the original kunitzin-OV2, but effectively assisted this complex to enter cells. TAT-kunitzin-OV2 (TAT-KOV2) exhibited a 32-fold increase in antibacterial activity and an enhanced bactericidal rate against E. coli. In addition, the conjugation enabled the parent peptides to exhibit antiproliferative activity against cancer cells. Interestingly, TAT-F9-kunitzin-OV2 (TAT-F9-KOV2) showed stronger antiproliferative activity against human breast cancer (MCF-7) and human glioblastoma (U251MG) cell lines, which TAT-KOV2 did not possess. Moreover, TAT-F9-KOV2 showed a 20-25-fold increase in antiproliferative capacity against human lung cancer (H157, H460) cell lines compared with TAT-KOV2. Therefore, the conjugation of CPPs effectively solves the problem of cell penetration that short KTIs lack and provides evidence for new potential applications for their subsequent development as new antibacterial and anticancer agents.
RESUMO
Celiac disease (CD) is an autoimmune intestinal disorder caused by the ingestion of gluten in people who carry the susceptible gene. In current celiac disease research, wheat gluten is often the main target of attention, neglecting the role played by non-gluten proteins. This study aimed to describe the effects of wheat amylase trypsin inhibitors (ATI, non-gluten proteins) and gliadin in BALB/c mice while exploring the further role of relevant adjuvants (cholera toxin, polyinosinic: polycytidylic acid and dextran sulfate sodium) intervention. An ex vivo splenocyte and intestinal tissue were collected for analysis of the inflammatory profile. The consumption of gliadin and ATI caused intestinal inflammation in mice. Moreover, the histopathology staining of four intestinal sections (duodenum, jejunum, terminal ileum, and middle colon) indicated that adjuvants, especially polyinosinic: polycytidylic acid, enhanced the villi damage and crypt hyperplasia in co-stimulation with ATI and gliadin murine model. Immunohistochemical results showed that tissue transglutaminase and IL-15 expression were significantly increased in the jejunal tissue of mice treated with ATI and gliadin. Similarly, the expression of inflammatory factors (TNF-α, IL-1ß, IL-4, IL-13) and Th1/Th2 balance also showed that the inflammation response was significantly increased after co-stimulation with ATI and gliadin. This study provided new evidence for the role of wheat amylase trypsin inhibitors in the pathogenesis of celiac disease.
RESUMO
Amylase/trypsin inhibitors (ATIs) are widely consumed in cereal-based foods and have been implicated in adverse reactions to wheat exposure, such as respiratory and food allergy, and intestinal responses associated with coeliac disease and non-coeliac wheat sensitivity. ATIs occur in multiple isoforms which differ in the amounts present in different types of wheat (including ancient and modern ones). Measuring ATIs and their isoforms is an analytical challenge as is their isolation for use in studies addressing their potential effects on the human body. ATI isoforms differ in their spectrum of bioactive effects in the human gastrointestinal (GI), which may include enzyme inhibition, inflammation and immune responses and of which much is not known. Similarly, although modifications during food processing (exposure to heat, moisture, salt, acid, fermentation) may affect their structure and activity as shown in vitro, it is important to relate these changes to effects that may present in the GI tract. Finally, much of our knowledge of their potential biological effects is based on studies in vitro and in animal models. Validation by human studies using processed foods as commonly consumed is warranted. We conclude that more detailed understanding of these factors may allow the effects of ATIs on human health to be better understood and when possible, to be ameliorated, for example by innovative food processing. We therefore review in short our current knowledge of these proteins, focusing on features which relate to their biological activity and identifying gaps in our knowledge and research priorities.
Assuntos
Doença Celíaca , Inibidores da Tripsina , Amilases , Animais , Humanos , Proteínas de Plantas , Tripsina , Inibidores da Tripsina/químicaRESUMO
Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.
Assuntos
Fabaceae/fisiologia , Herbivoria , Plantas Geneticamente Modificadas , Inibidores de Proteases/metabolismo , Animais , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Insetos , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biologia Sintética/métodosRESUMO
Long-term alcohol consumption and gene mutations are the most important causes of chronic pancreatitis. In addition to mutations in acinar genes, such as digestive enzymes and their inhibitors, defects in genes that primarily or exclusively affect the duct cells have also been described in recent years. Genetic changes are found not only in patients with a positive family history (hereditary pancreatitis) but also in so-called idiopathic and, to a lesser extent, in alcoholic chronic pancreatitis. The coming years will likely show that there are very complex interactions between environmental influences and numerous genetic factors.