Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Parasitol Int ; 104: 102970, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303851

RESUMO

BACKGROUND: Surveillance of "silent" human African Trypanosomiasis (HAT) foci is important for the achievement of the World Health Organization (WHO) goal of interrupting the transmission of this disease by 2030. It is in this context that this study was carried out to determine the trypanosome species circulating in the "silent" HAT foci of Bafia and the Manoka island in Cameroon. METHODS: In the Bafia and Manoka HAT foci, georeferenced pyramidal traps were used to trap tsetse flies. After DNA extraction from each whole fly, molecular tools were used to detect different trypanosome species as well as the origin of tsetse fly blood meals. Geographical information system was used to map the trypanosome infections and entomological data and to localize areas at high risk for trypanosome transmission. RESULTS: For this study, 1683 tsetse flies were caught and the relative apparent densities was 2.96: 0.03 in the Bafia HAT focus and 5.23 in the Manoka island. For the molecular identification of trypanosomes, 708 non-teneral tsetse flies (8 from Bafia and 700 from Manoka) were randomly selected. The overall trypanosome infection rate was 7.34 % with no infection in the Bafia HAT focus. Among the analysed flies, 4.57 % had trypanosomes of the subgenus Trypanozoon while 4.1 % and 1.13 % had respectively T. congolense and T. vivax. The most common mixed infections were the combination of trypanosomes of the subgenus Trypanozoon and T. congolense. Of the 708 tsetse flies analysed, 134 (18.93 %) tsetse flies were found with residual blood meals, 94 % and 6 % were respectively from humans and dogs. The trapping sites of Plateau, Sandje and Hospital appeared as the areas where contact with tsetse flies is most common. CONCLUSION: This study revealed a discrepancy in the abundance tsetse flies as well as the trypanosome infection rates in tsetse of the two "silent" HAT foci of Cameroon. The detection of different trypanosome species in tsetse from the Manoka Island highlights their transmission. The high percentage of human blood meals in tsetse flies indicates an important contact between tsetse flies and human; emphasizing the risk of trypanosome transmission to human in this island.

2.
Res Sq ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39257987

RESUMO

Background: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius, Spiroplasmasp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambienseand 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius(54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia(43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoideswas infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.

3.
BMC Microbiol ; 24(1): 373, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342132

RESUMO

BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.


Assuntos
Enterobacteriaceae , Spiroplasma , Simbiose , Trypanosoma , Moscas Tsé-Tsé , Wolbachia , Animais , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Spiroplasma/isolamento & purificação , Spiroplasma/fisiologia , Spiroplasma/genética , Wolbachia/isolamento & purificação , Wolbachia/genética , Burkina Faso , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/fisiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Masculino , Feminino
4.
Insects ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921163

RESUMO

Arthropod vectors are responsible for a multitude of human and animal diseases affecting poor communities in sub-Saharan Africa. Their control still relies on chemical agents, despite growing evidence of insecticide resistance and environmental health concerns. Biorational agents, such as the entomopathogenic fungus Metarhizium anisopliae, might be an alternative for vector control. Recently, the M. anisopliae isolate ICIPE 7 has been developed into a commercial product in Kenya for control of ticks on cattle. We were interested in assessing the potential of controlling not only ticks but also disease-transmitting mosquitoes and tsetse flies using cattle as blood hosts, with the aim of developing a product for integrated vector management. Laboratory bioassays were carried out with M. anisopliae, isolate ICIPE 7 and isolate ICIPE 30, to compare efficacy against laboratory-reared Anopheles arabiensis. ICIPE 7 was further tested against wild Glossina fuscipes and Rhipicephalus spp. Dose-response tests were implemented, period of mosquito exposure was evaluated for effects on time to death, and the number of spores attached to exposed vectors was assessed. Exposure to 109 spores/mL of ICIPE 7 for 10 min resulted in a similar mortality of An. arabiensis as exposure to ICIPE 30, albeit at a slower rate (12 vs. 8 days). The same ICIPE 7 concentration also resulted in mortalities of tsetse flies (LT50: 16 days), tick nymphs (LT50: 11 days), and adult ticks (LT50: 20 days). Mosquito mortality was dose-dependent, with decreasing LT50 of 8 days at a concentration of 106 spores/mL to 6 days at 1010 spores/mL. Exposure period did not modulate the outcome, 1 min of exposure still resulted in mortality, and spore attachment to vectors was dose-dependent. The laboratory bioassays confirmed that ICIPE 7 has the potential to infect and cause mortality to the three exposed arthropods, though at slower rate, thus requiring further validation under field conditions.

5.
Parasite ; 31: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450719

RESUMO

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Assuntos
Aranhas , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/genética , Chade/epidemiologia , Trypanosoma brucei gambiense/genética , Animais Domésticos
6.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543619

RESUMO

This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.

7.
Emerg Infect Dis ; 30(1): 125-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967521

RESUMO

We report 4 cases of human African trypanosomiasis that occurred in Ethiopia in 2022, thirty years after the last previously reported case in the country. Two of 4 patients died before medicine became available. We identified the infecting parasite as Trypanosoma brucei rhodesiense. Those cases imply human African trypanosomiasis has reemerged.


Assuntos
Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Trypanosoma brucei rhodesiense , Etiópia/epidemiologia
8.
Parasitol Res ; 123(1): 46, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095710

RESUMO

Tsetse flies are major arthropod vectors of trypanosomes that cause debilitating African animal trypanosomiasis. The emergence of drug-resistant trypanosomes is a common problem in sub-Saharan Africa. This study aimed to identify tsetse flies' seasonal variation in apparent densities and their infection rates and the occurrence of drug-resistant trypanosomes. Tsetse flies were collected from Lambwe, Kenya, during May and September 2021. Genomic DNA was extracted from them, and the ITS1 gene was amplified to detect Trypanosoma infection with subsequent species determination. Transporter genes DMT, E6M6, TbAT/P2, and TcoAde2 were targeted to detect polymorphisms associated with drug-resistance, using sequencing and comparison to drug-sensitive trypanosome species referenced in Genbank. A total of 498 tsetse flies and 29 non-tsetse flies were collected. The apparent density of flies was higher in wet season 6.2 fly per trap per density (FTD) than in the dry season 2.3 FTD (P = 0.001), with n = 386 and n = 141 flies caught in each season, respectively. Male tsetse flies (n = 311) were more numerous than females (n = 187) (P = 0.001). Non-tsetse flies included Tabanids and Stomoxys spp. Overall, Trypanosoma infection rate in tsetse was 5% (25/498) whereby Trypanosoma vivax was 4% (11/25), Trypanosoma congolense 36% (9/25), and Trypanosoma brucei 20% (5/25) (P = 0.186 for the distribution of the species), with infections being higher in females (P = 0.019) and during the wet season (P < 0.001). Numerous polymorphisms and insertions associated with drug resistance were detected in DMT and E6M6 genes in two T. congolense isolates while some isolates lacked these genes. T. brucei lacked TbAT/P2 genes. TcoAde2 sequences in three T. congolense isolates were related to those observed in trypanosomes from cattle blood in our previous study, supporting tsetse fly involvement in transmission in the region. We report Trypanosoma associated with trypanocidal drug-resistance in tsetse flies from Lambwe, Kenya. Female tsetse flies harbored more Trypanosoma infections than males. Tsetse transmission of trypanosomes is common in Lambwe. Risk of trypanosome infection would seem higher in the wet season, when tsetse flies and Trypanosoma infections are more prevalent than during the dry season. More efforts to control animal trypanosome vectors in the region are needed, with particular focus on wet seasons.


Assuntos
Demência Frontotemporal , Muscidae , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Masculino , Feminino , Animais , Bovinos , Moscas Tsé-Tsé/genética , Estações do Ano , Quênia/epidemiologia , Trypanosoma/genética , Tripanossomíase Africana/epidemiologia
9.
Insects ; 14(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37887814

RESUMO

Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.

10.
BMC Microbiol ; 23(1): 260, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716961

RESUMO

BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.


Assuntos
Glossinidae , Spiroplasma , Tripanossomíase Africana , Moscas Tsé-Tsé , Wolbachia , Animais , Wolbachia/genética , Camarões , Chade , Nigéria , Spiroplasma/genética
11.
Parasite ; 30: 8, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010449

RESUMO

African animal trypanosomoses are vector-borne diseases that cause enormous livestock losses in sub-Saharan Africa, with drastic socio-economic impacts. Vector control in the context of an area-wide integrated pest management program with a sterile insect technique component requires the production of high-quality sterile male tsetse flies. In our study, we evaluated the effect of irradiation on the fecundity of Glossina palpalis gambiensis to identify the optimal dose that will induce maximum sterility while maintaining biological performance as much as possible. In addition, male mating performance was evaluated in semi-field cages. The irradiation doses used were 90, 100, 110, 120, 130, 140, and 150 Gy, and untreated males were used as the control. The results showed that pupal production and emergence rates were higher in batches of females that had mated with fertile males than in those that had mated with irradiated males with any experimental dose. A dose of 120 Gy administered to male flies induced 97-99% sterility after mating with virgin females. For the semi-field cage experiments, males irradiated with 120 Gy showed good sexual competitiveness as compared to fertile males and those irradiated with 140 Gy, considering the level of filling of spermatheca and the number of pairs formed. The optimal radiation dose of 120 Gy found in this study is slightly different from the traditional dose of 110 Gy that has been used in several eradication programmes in the past. The potential reasons for this difference are discussed, and an argument is made for the inclusion of reliable dosimetry systems in these types of studies.


Title: Le rayonnement gamma pour Glossina palpalis gambiensis revisité : effet sur la fertilité et la compétitivité sexuelle. Abstract: Les trypanosomoses animales africaines sont des maladies à transmission vectorielle qui causent d'énormes pertes de bétail en Afrique subsaharienne, avec des impacts socio-économiques importants. La lutte antivectorielle dans le cadre d'un programme de lutte intégrée contre les ravageurs à l'échelle d'une zone avec une composante de technique d'insectes stériles nécessite la production de glossines mâles stériles de haute qualité. Dans notre étude, nous avons évalué l'effet de l'irradiation sur la fécondité de Glossina palpalis gambiensis afin d'identifier la dose optimale qui induira une stérilité maximale tout en maintenant au maximum les performances biologiques. De plus, les performances d'accouplement des mâles ont été évaluées en cages de semi-terrain. Les doses d'irradiation utilisées étaient de 90, 100, 110, 120, 130, 140 et 150 Gy, et des mâles non traités ont été utilisés comme contrôle. Les résultats ont montré que les taux de production et d'émergence de pupes étaient plus élevés dans les lots de femelles qui s'étaient accouplées avec des mâles fertiles que dans les lots de celles accouplées avec des mâles irradiés, avec n'importe quelle dose expérimentale. Une dose de 120 Gy administrée à des mouches mâles a induit une stérilité de 97 à 99 % après accouplement avec des femelles vierges. Pour les expériences en cages de semi-terrain, les mâles irradiés à 120 Gy ont montré une bonne compétitivité sexuelle par rapport aux mâles fertiles et à ceux irradiés à 140 Gy, en considérant le niveau de remplissage de leur spermathèque et le nombre de couples formés. La dose de rayonnement optimale de 120 Gy trouvée dans cette étude est légèrement différente de la dose traditionnelle de 110 Gy qui a été utilisée dans plusieurs programmes d'éradication dans le passé. Les raisons potentielles de cette différence sont discutées et un argument est avancé pour l'inclusion de systèmes de dosimétrie fiables dans ce type d'études.


Assuntos
Infertilidade , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Feminino , Masculino , Comportamento Sexual Animal/efeitos da radiação , Reprodução , Fertilidade
12.
Trop Med Infect Dis ; 8(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36828496

RESUMO

Tsetse flies are obligate hematophagous vectors of animal and human African trypanosomosis. They cyclically transmit pathogenic Trypanosoma species. The endosymbiont Sodalis glossinidius is suggested to play a role in facilitating the susceptibility of tsetse flies to trypanosome infections. Therefore, this study was aimed at determining the prevalence of S. glossinidius and trypanosomes circulating in tsetse flies and checking whether an association exists between trypanosomes and Sodalis infections in tsetse flies from Kafue National Park in Zambia. A total of 326 tsetse flies were sampled from the Chunga and Ngoma areas of the national park. After DNA extraction was conducted, the presence of S. glossinidius and trypanosome DNA was checked using PCR. The Chi-square test was carried out to determine whether there was an association between the presence of S. glossinidius and trypanosome infections. Out of the total tsetse flies collected, the prevalence of S. glossinidius and trypanosomes was 21.8% and 19.3%, respectively. The prevalence of S. glossinidius was 22.2% in Glossina morsitans and 19.6% in Glossina pallidipes. In relation to sampling sites, the prevalence of S. glossinidius was 26.0% in Chunga and 21.0% in Ngoma. DNA of trypanosomes was detected in 18.9% of G. morsitans and 21.4% of G. pallidipes. The prevalence of trypanosomes was 21.7% and 6.0% for Ngoma and Chunga, respectively. The prevalences of trypanosome species detected in this study were 6.4%, 4.6%, 4.0%, 3.7%, 3.1%, and 2.5% for T. vivax, T. simiae, T. congolense, T. godfreyi, T. simiae Tsavo, and T. b. brucei, respectively. Out of 63 trypanosome infected tsetse flies, 47.6% of the flies also carried S. glossinidius, and the remaining flies were devoid of S. glossinidius. A statistically significant association was found between S. glossinidius and trypanosomes (p < 0.001) infections in tsetse flies. Our findings indicated that presence of S. glossinidius increases the susceptibility of tsetse flies to trypanosome infections and S. glossinidius could be a potential candidate for symbiont-mediated vector control in these tsetse species.

13.
Pathogens ; 11(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365026

RESUMO

INTRODUCTION: Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse flies' species distribution in endemic foci. The present study was intended to fill this gap and improve understanding of trypanosome circulation in three active foci in the centre and south of Congo. METHODS: Pyramid traps were set in various places in villages to collect tsetse flies both during the rainy and dry seasons. Once collected, tsetse flies were identified using morphological keys. DNA extracted from flies was processed by PCR for species identification and for detection of trypanosome presence. A second PCR was run for different trypanosome species identification. RESULTS: A total of 1291 tsetse flies were collected. The average apparent density of flies per day was 0.043 in Mpouya, 0.73 in Ngabé and 2.79 in Loudima. Glossina fuscipes quazensis was the predominant tsetse fly collected in Ngabé and Mpouya, while Glossina palpalis palpalis was the only tsetse fly found in Loudima. A total of 224 (17.7%) flies were detected infected by trypanosomes; 100 (7.91%) by Trypanosoma congolense savannah, 22 (1.74%) by Trypanosoma congolense forest, 15 (1.19%) by Trypanosoma vivax, 83 (6.56%) by Trypanosoma brucei (s.l.) and 2 (0.16%) undetermined species. No T Trypanosoma brucei gambiense was found. A total of 57 co-infections between T. brucei (s.l.) and T. congolense savannah or T. brucei (s.l.) and T. congolense forest were found only in G. p. palpalis. Loudima recorded the highest number of infected tsetse flies. CONCLUSION: The study provided updated information on the distribution of tsetse fly populations as well as on Trypanosoma species circulating in tsetse flies in the different active HAT foci in Congo. These data suggested a high risk of potential transmission of animal trypanosomes in these foci, thus stressing the need for active surveillance in this endemic area.

14.
Microorganisms ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744659

RESUMO

The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.

15.
Mol Ecol Resour ; 22(8): 2915-2927, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35730337

RESUMO

Many emerging infectious diseases originate from wild animals, so there is a profound need for surveillance and monitoring of their pathogens. However, the practical difficulty of sample acquisition from wild animals tends to limit the feasibility and effectiveness of such surveys. Xenosurveillance, using blood-feeding invertebrates to obtain tissue samples from wild animals and then detect their pathogens, is a promising method to do so. Here, we describe the use of tsetse fly blood meals to determine (directly through molecular diagnostic and indirectly through serology), the diversity of circulating blood-borne pathogens (including bacteria, viruses and protozoa) in a natural mammalian community of Tanzania. Molecular analyses of captured tsetse flies (182 pools of flies totalizing 1728 flies) revealed that the blood meals obtained came from 18 different vertebrate species including 16 non-human mammals, representing approximately 25% of the large mammal species present in the study area. Molecular diagnostic demonstrated the presence of different protozoa parasites and bacteria of medical and/or veterinary interest. None of the six virus species searched for by molecular methods were detected but an ELISA test detected antibodies against African swine fever virus among warthogs, indicating that the virus had been circulating in the area. Sampling of blood-feeding insects represents an efficient and practical approach to tracking a diversity of pathogens from multiple mammalian species, directly through molecular diagnostic or indirectly through serology, which could readily expand and enhance our understanding of the ecology and evolution of infectious agents and their interactions with their hosts in wild animal communities.


Assuntos
Vírus da Febre Suína Africana , Dípteros , Moscas Tsé-Tsé , Vírus , Animais , Animais Selvagens , Patógenos Transmitidos pelo Sangue , Mamíferos , Refeições , Suínos
16.
Med Vet Entomol ; 36(3): 260-268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593526

RESUMO

Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84-3.91], and 2.51, 95% CI [2.49-2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with 'Tiny Targets'.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Camarões/epidemiologia , Humanos , Insetos Vetores , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/parasitologia
17.
Parasit Vectors ; 15(1): 112, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361286

RESUMO

This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.


Assuntos
Culicidae , Moscas Tsé-Tsé , Animais , Animais Geneticamente Modificados , Insetos Vetores/genética , Mosquitos Vetores , Moscas Tsé-Tsé/microbiologia
18.
Vector Borne Zoonotic Dis ; 22(2): 101-107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175139

RESUMO

Introduction: Trypanosomiasis is a parasitic infection caused by the protozoa Trypanosoma. It is exclusively associated with Glossina species habitats and, therefore, restricted to specific geographical settings. It affects a wide range of hosts, including humans. Animals may carry different Trypanosoma spp. while being asymptomatic. They are, therefore, potentially important in unpremeditated disease transmission. Aim: The aim of this study was to study the potential impact of the government tsetse fly control program, and to elucidate the role of pigs in the Trypanosoma epidemiology in the West Nile region in Uganda. Methods: A historically important human African trypanosomiasis (HAT) hotspot was selected, with sampling in sites with and without a government tsetse fly control program. Pigs were screened for infection with Trypanosoma and tsetse traps were deployed to monitor vector occurrence, followed by tsetse fly dissection and microscopy to establish infection rates with Trypanosoma. Pig blood samples were further analyzed to identify possible Trypanosoma infections using internal transcribed spacer (ITS)-PCR. Results: Using microscopy, Trypanosoma was detected in 0.56% (7/1262) of the sampled pigs. Using ITS-PCR, 114 of 341 (33.4%) pig samples were shown to be Trypanosoma vivax positive. Of the 360 dissected tsetse flies, 13 (3.8%) were positive for Trypanosoma under the microscope. The difference in captured tsetse flies in the government intervention sites in comparison with the control sites was significant (p < 0.05). Seasonality did not play a substantial role in the tsetse fly density (p > 0.05). Conclusion: This study illustrated the impact of a government control program with low vector abundance in a historical HAT hotspot in Uganda. The study could not verify that pigs in the area were carriers for the causative agent for HAT, but showed a high prevalence of the animal infectious agent T. vivax.


Assuntos
Doenças dos Suínos , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Estações do Ano , Suínos , Doenças dos Suínos/parasitologia , Trypanosoma/genética , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Uganda/epidemiologia
19.
Open Res Afr ; 5: 22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37600566

RESUMO

Background: Animal African trypanosomosis (AAT) is a veterinary disease caused by trypanosomes transmitted cyclically by tsetse flies. AAT causes huge agricultural losses in sub-Saharan Africa. Both tsetse flies and trypanosomosis (T&T) are endemic in the study area inhabited by smallholder livestock farmers at the livestock-wildlife interface around Arabuko-Sokoke Forest Reserve (ASFR) in Kilifi County on the Kenyan coast. We assessed farmers' knowledge, perceptions and control practices towards T&T. Methods: A cross-sectional study was conducted during November and December 2017 to collect data from 404 randomly selected cattle-rearing households using a structured questionnaire. Descriptive statistics were used to determine farmers' knowledge, perceptions, and control practices towards T&T. Demographic factors associated with knowledge of T&T were assessed using a logistic regression model. Results: Participants consisted of 53% female, 77% married, 30% elderly (>55 years), and the majority (81%) had attained primary education or below. Most small-scale farmers (98%) knew the tsetse fly by its local name, and 76% could describe the morphology of the adult tsetse fly by size in comparison to the housefly's ( Musca domestica). Only 16% of the farmers knew tsetse flies as vectors of livestock diseases. Higher chances of adequate knowledge on T&T were associated with the participants' (i) age of 15-24 years (aOR 2.88 (95% CI 1.10-7.52), (ii) level of education including secondary (aOR 2.46 (95% CI 1.43-4.24)) and tertiary (aOR 3.80 (95% CI 1.54-9.37)), and (iii) employment status: self-employed farmers (aOR 6.54 (95% CI 4.36-9.80)). Conclusions: Our findings suggest that small-scale farmers around ASFR have limited knowledge of T&T. It is envisaged that efforts geared towards training of the farmers would bridge this knowledge gap and sharpen the perceptions and disease control tactics to contribute to the prevention and control of T&T.

20.
Vet Med (Auckl) ; 12: 285-292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745925

RESUMO

BACKGROUND: Bovine trypanosomosis remains a vital livestock disease and constraint which is intimidating livestock health and production, regardless of ongoing tsetse and trypanosomosis control struggles in Jimma Arjo district, East Wollega zone, Ethiopia. METHODS: A cross-sectional study was carried out with the objective of determining prevalence of cattle trypanosomiasis and apparent tsetse fly density in six randomly selected peasant associations of Jimma Arjo District from April 2018 to January 2019. RESULTS: From overall 819 arbitrarily selected cattle (n= 36; 4.39%), infection rate was recorded. Selected animals were invariably infested with different trypanosome species among which Tryapanosoma congolense (80.55%) was the most common, followed by T. vivax (11.11%), T. brucei (5.55%) respectively. Co-infection of T. vivax and T. congolense accounted for 2.77% of total infection rate. This finding indicates a statistically significant difference (p<0.05) among good, medium, and poor body condition animals with respect to Tryapanosomosis infection rate. Poor body condition animals were highly infected with trypanosome parasite as compared to medium and good body condition score animals. This study shows statistically significant association was obtained between mean packed cell volume (PCV) and trypanosomiasis infection rate (P<0.05). The lower mean PCV value (21.14%) were highly affected as compared with high mean PCV value animals (25.26%). The result of entomological survey, by using mono pyramidal traps deployed near animal grazing field and rivers of selected peasant association (PA), showed presence of four Glossina species namely Glossina morsitans, G. pallidipes, G. tachinoides, and G. fuscipes with high fly density per trap in Meta PA. Higher catches of G. fuscipes were registered as compared to other vectors. CONCLUSION: Generally, this study indicated the disease is still a main problem for livestock health and production in the study area and it necessitates disease and tsetse fly control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA