Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 277, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872588

RESUMO

BACKGROUND: Tumor cell-induced platelet aggregation (TCIPA) is not only a recognized mechanism for paraneoplastic thrombocytosis but also a potential breakthrough alternative for a low response to immune checkpoint inhibitors (ICIs) in hematogenous metastasis of malignant melanoma (MM). However, there is no TCIPA-specific model for further investigation of the relationship among TCIPA, the tumor immune microenvironment (TIME), and metastasis. METHODS: We developed a TCIPA metastatic melanoma model with advanced hematogenous metastasis and enhanced TCIPA characteristics. We also investigated the pathway for TCIPA in the TIME. RESULTS: We found that TCIPA triggers the recruitment of tumor-associated macrophages (TAMs) to lung metastases by secreting B16 cell-educated platelet-derived chemokines such as CCL2, SDF-1, and IL-1ß. Larger quantities of TAMs in the TCIPA model were polarized to the M2 type by B16 cell reprocessing, and their surface programmed cell death 1 ligand 1 (PD-L1) expression was upregulated, ultimately assisting B16 cells in escaping host immunity and accelerating MM hematogenous metastasis. CONCLUSIONS: TCIPA accelerates MM lung metastasis via tumor-educated platelets (TEPs), triggering TAM recruitment, promoting TAM polarization (M2), and remodeling the suppressive TIME in lung metastases.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Agregação Plaquetária/fisiologia , Macrófagos , Microambiente Tumoral , Melanoma Maligno Cutâneo
2.
Front Immunol ; 12: 807600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987523

RESUMO

Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.


Assuntos
Antineoplásicos/uso terapêutico , Plaquetas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Lectinas Tipo C/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias Bucais/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Plaquetas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Neoplasias Bucais/sangue , Neoplasias Bucais/patologia , Invasividade Neoplásica , Inibidores da Agregação Plaquetária/efeitos adversos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Microambiente Tumoral
3.
Cancers (Basel) ; 10(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441823

RESUMO

Platelets are small anucleate cells that are traditionally described as the major effectors of hemostasis and thrombosis. However, increasing evidence indicates that platelets play several roles in the progression of malignancies and in cancer-associated thrombosis. A notable cross-communication exists between platelets and cancer cells. On one hand, cancer can "educate" platelets, influencing their RNA profiles, the numbers of circulating platelets and their activation states. On the other hand, tumor-educated platelets contain a plethora of active biomolecules, including platelet-specific and circulating ingested biomolecules, that are released upon platelet activation and participate in the progression of malignancy. The numerous mechanisms by which the primary tumor induces the production, activation and aggregation of platelets (also known as tumor cell induced platelet aggregation, or TCIPA) are directly related to the pro-thrombotic state of cancer patients. Moreover, the activation of platelets is critical for tumor growth and successful metastatic outbreak. The development or use of existing drugs targeting the activation of platelets, adhesive proteins responsible for cancer cell-platelet interactions and platelet agonists should be used to reduce cancer-associated thrombosis and tumor progression.

4.
Transl Lung Cancer Res ; 4(6): 713-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26798580

RESUMO

Platelets are anucleate fragments formed from the cytoplasm of megakaryocytes and represent the smallest circulating hematopoietic cells. Thought for almost a century to possess solely hemostatic potentials, platelets actually play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On the one hand, tumor cells induce platelet aggregation, known to act as the trigger of cancer-associated thrombosis and on the other hand, platelets recruited to the tumor microenvironment interact directly with tumor cells favoring proliferation, and indirectly through the release of angiogenic and mitogenic proteins. Furthermore, platelets are immunosuppressive cells that protect metastatic cancer cells from surveillance by killer cells, nullifying the effects of immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA