Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
ACS Biomater Sci Eng ; 10(8): 5265-5273, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39087916

RESUMO

Single-cell-derived tumor organoids (STOs) possess a distinct genetic background, making them valuable tools for demonstrating tumor heterogeneity. In order to fulfill the high throughput demands of STO assays, we have developed a microfluidic chip containing 30 000 microwells, which is dedicated to a single cell culture approach for selective expansion and differential induction of cancer stem cells. The microwells are coated with a hydrophilic copolymer to eliminate cell adhesion, and the cell culture is supported by poly(ethylene glycol) (PEG) to establish a nonadhesive culture environment. By utilizing an input cell density of 7 × 103·mL-1, it is possible to construct a 4000 single cell culture system through stochastic cell occupation. We demonstrate that the addition of 15% PEG10000 in the cell culture medium effectively prevents cell loss while facilitating tumor stem cell expansion. As were demonstrated by HCT116, HT29, and SW480 colon cancer cells, the microfluidic approach achieved a STO formation rate of ∼20%, resulting in over 800 STOs generated from a single culture. Comprehensive analysis through histomorphology, immunohistochemistry, drug response evaluation, assessment of cell invasion, and biomarker detection reveals the heterogeneity among individual STOs. Specifically, the smaller STOs exhibited higher invasion and drug resistance capabilities compared with the larger ones. The developed microfluidic approach effectively facilitates STO formation and offers promising prospects for investigating tumor heterogeneity, as well as conducting personalized therapy-focused drug screening.


Assuntos
Neoplasias do Colo , Células-Tronco Neoplásicas , Organoides , Análise de Célula Única , Humanos , Neoplasias do Colo/patologia , Organoides/patologia , Organoides/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única/métodos , Dispositivos Lab-On-A-Chip , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Células HCT116 , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
2.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123399

RESUMO

Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.

3.
Ann Anat ; 255: 152298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971450

RESUMO

Cancer research involves significant animal consumption and suffering. Tumor cells can be differentiated in vitro into three-dimensional organoids that resemble the primary tumor. In basic cancer research, however, tumor organoids are usually only used alongside animal experiments. We have established an easy-to-perform protocol that allows to culture KRAS-driven lung tumor cells as organoids for extended periods of time. Like the corresponding tumors in mice, the organoids produce surfactant protein C but no markers of airway epithelial cells (e.g. SCGB1A1, KRT5). The organoids can be passaged as single cell suspensions. Our organoid model contributes to replace animal experiments with cell culture systems and can be used for drug testing or functional studies in cancer research.


Assuntos
Neoplasias Pulmonares , Organoides , Animais , Organoides/patologia , Camundongos , Neoplasias Pulmonares/patologia , Técnicas de Cultura de Células/métodos , Células Tumorais Cultivadas
4.
Methods Mol Biol ; 2811: 137-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037655

RESUMO

The integration of CRISPR/Cas9 genome editing techniques with organoid technology has revolutionized the field of tumor modeling, enabling the creation of diverse tumor models with distinct mutational profiles. This protocol details the application of CRISPR knock-ins to engineer tumor organoids with reporter cassettes, which are regulated by endogenous promoters of specific genes of interest. This approach facilitates the precise fluorescent labeling, isolation, and subsequent manipulation of targeted tumor cell subpopulations. The utilization of these knock-in reporter cassettes not only allows the visualization and purification of specific tumor cell subsets but also enables conditional cell ablation and lineage tracing studies. In this chapter, we provide a comprehensive guide for the design, construction, delivery, and validation of CRISPR/Cas9 tools tailored for knock-in reporter cassette integration into specific marker genes of interest. By following this protocol, researchers can harness the potential of engineered tumor organoids to decipher intricate tumor heterogeneity, track metastatic trajectories, and unveil novel therapeutic vulnerabilities linked to specific tumor cell subpopulations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Introdução de Genes , Organoides , Organoides/metabolismo , Organoides/patologia , Humanos , Técnicas de Introdução de Genes/métodos , Edição de Genes/métodos , Animais , Neoplasias/genética , Neoplasias/patologia , Genes Reporter
5.
J Colloid Interface Sci ; 675: 192-206, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968636

RESUMO

Chemotherapy is a widely used cancer treatment, however, it can have notable side effects owing to the high-doses of drugs administered. Sonodynamic therapy (SDT) induced by sonosensitizers has emerged as a promising approach to treat cancer, however, there is limited research evaluating its therapeutic effects on human tumors. In this study, we introduced a dual therapy that combines low-dose chemotherapeutic drugs with enhanced sonodynamic therapy, utilizing barium titanate (BaTiO3, BTO) nanoparticles (NPs) as sonosensitizers to treat tumor organoids. We demonstrated that ultrasound could improve the cellular uptake of chemotherapy drugs, while the chemotherapeutic effect of the drugs made it easier for BTO NPs to enter tumor cells, and the dual therapy synergistically inhibited tumor cell viability. Moreover, different patient-derived tumor organoids exhibited different sensitivities to this therapy, highlighting the potential to evaluate individual responses to combination therapies prior to clinical intervention. Furthermore, this dual therapy exhibited therapeutic effects equivalent to those of high-dose chemotherapy drugs on drug-resistant tumor organoids and showed the potential to enhance the efficacy of killing drug-resistant tumors. In addition, the biosafety of the BTO NPs was successfully verified in live mice via oral administration. This evidence confirms the reliable and safe nature of the dual therapy approach, making it a feasible option for precise and personalized therapy in clinical applications.

6.
World J Gastrointest Oncol ; 16(6): 2826-2841, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994154

RESUMO

BACKGROUND: Gastrointestinal tumor organoids serve as an effective model for simulating cancer in vitro and have been applied in basic biology and preclinical research. Despite over a decade of development and increasing research achievements in this field, a systematic and comprehensive analysis of the research hotspots and future trends is lacking. AIM: To address this problem by employing bibliometric tools to explore the publication years, countries/regions, institutions, journals, authors, keywords, and references in this field. METHODS: The literature was collected from Web of Science databases. CiteSpace-6.2R4, a widely used bibliometric analysis software package, was used for institutional analysis and reference burst analysis. VOSviewer 1.6.19 was used for journal co-citation analysis, author co-authorship and co-citation analysis. The 'online platform for bibliometric analysis (https://bibliometric.com/app)' was used to assess the total number of publications and the cooperation relationships between countries. Finally, we employed the bibliometric R software package (version R.4.3.1) in R-studio, for a comprehensive scientific analysis of the literature. RESULTS: Our analysis included a total of 1466 publications, revealing a significant yearly increase in articles on the study of gastrointestinal tumor organoids. The United States (n = 393) and Helmholtz Association (n = 93) have emerged as the leading countries and institutions, respectively, in this field, with Hans Clevers and Toshiro Sato being the most contributing authors. The most influential journal in this field is Gastroenterology. The most impactful reference is "Long term expansion of epithelial organs from human colon, adenoma, adenocarcinoma, and Barrett's epithelium". Keywords analysis and citation burst analysis indicate that precision medicine, disease modeling, drug development and screening, and regenerative medicine are the most cutting-edge directions. These focal points were further detailed based on the literature. CONCLUSION: This bibliometric study offers an objective and quantitative analysis of the research in this field, which can be considered as an important guide for next scientific research.

7.
Cancer Lett ; 598: 217122, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39029781

RESUMO

Tumor organoids have emerged as a crucial preclinical model for multiple cancer research. Their high establishment rates, stability, and ability to replicate key biological features of original tumor cells in vivo render them invaluable for exploring tumor molecular mechanisms, discovering potential anti-tumor drugs, and predicting clinical drug efficacy. Here, we review the establishment of tumor organoid models and provide an extensive overview of organoid culturing strategies. We also emphasize the significance of integrating cellular components of the tumor microenvironment and physicochemical factors in the organoid culturing system, highlighting the importance of artificial intelligence technology in advancing organoid construction. Moreover, we summarize recent advancements in utilizing organoid systems for novel anti-cancer drug screening and discuss promising trends for enhancing advanced organoids in next-generation disease modeling.


Assuntos
Neoplasias , Organoides , Microambiente Tumoral , Organoides/efeitos dos fármacos , Organoides/patologia , Humanos , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Inteligência Artificial , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia
8.
Oncol Rep ; 52(2)2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38904192

RESUMO

Radiotherapy exhibits significant versatility and efficacy in cancer treatment, thereby playing a crucial role in the field of oncology. However, there remains an urgent need for extensive research on various aspects of radiotherapy, including target selection, damage repair and its combination with immunotherapy. Particularly, the development of in vitro models to replicate in vivo tumor lesion responses is vital. The present study provides a thorough review of the establishment and application of tumor organoids in radiotherapy, aiming to explore their potential impact on cancer treatment.


Assuntos
Neoplasias , Organoides , Radiobiologia , Organoides/efeitos da radiação , Organoides/patologia , Humanos , Neoplasias/radioterapia , Neoplasias/patologia , Radiobiologia/métodos , Animais
9.
BMC Cancer ; 24(1): 701, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849726

RESUMO

BACKGROUND: Ovarian cancer is the first cause of death from gynecological malignancies mainly due to development of chemoresistance. Despite the emergence of PARP inhibitors, which have revolutionized the therapeutic management of some of these ovarian cancers, the 5-year overall survival rate remains around 45%. Therefore, it is crucial to develop new therapeutic strategies, to identify predictive biomarkers and to predict the response to treatments. In this context, functional assays based on patient-derived tumor models could constitute helpful and relevant tools for identifying efficient therapies or to guide clinical decision making. METHOD: The OVAREX study is a single-center non-interventional study which aims at investigating the feasibility of establishing in vivo and ex vivo models and testing ex vivo models to predict clinical response of ovarian cancer patients. Patient-Derived Xenografts (PDX) will be established from tumor fragments engrafted subcutaneously into immunocompromised mice. Explants will be generated by slicing tumor tissues and Ascites-Derived Spheroids (ADS) will be isolated following filtration of ascites. Patient-derived tumor organoids (PDTO) will be established after dissociation of tumor tissues or ADS, cell embedding into extracellular matrix and culture in specific medium. Molecular and histological characterizations will be performed to compare tumor of origin and paired models. Response of ex vivo tumor-derived models to conventional chemotherapy and PARP inhibitors will be assessed and compared to results of companion diagnostic test and/or to the patient's response to evaluate their predictive value. DISCUSSION: This clinical study aims at generating PDX and ex vivo models (PDTO, ADS, and explants) from tumors or ascites of ovarian cancer patients who will undergo surgical procedure or paracentesis. We aim at demonstrating the predictive value of ex vivo models for their potential use in routine clinical practice as part of precision medicine, as well as establishing a collection of relevant ovarian cancer models that will be useful for the evaluation of future innovative therapies. TRIAL REGISTRATION: The clinical trial has been validated by local research ethic committee on January 25th 2019 and registered at ClinicalTrials.gov with the identifier NCT03831230 on January 28th 2019, last amendment v4 accepted on July 18, 2023.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Humanos , Camundongos , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Organoides , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Terapias em Estudo/métodos
10.
Front Oncol ; 14: 1414311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835365

RESUMO

A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.

11.
Cell Rep Methods ; 4(5): 100772, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744290

RESUMO

Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.


Assuntos
Neurofibroma , Organoides , Neoplasias Cutâneas , Humanos , Organoides/patologia , Neoplasias Cutâneas/patologia , Neurofibroma/patologia , Neurofibroma/cirurgia , Neurofibromatose 1/patologia
12.
Bull Exp Biol Med ; 176(5): 703-708, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724815

RESUMO

The activity of known modulators of the Nrf2 signaling pathway (bardoxolone and brusatol) was studied on cultures of tumor organoids of metastatic colorectal cancer previously obtained from three patients. The effect of modulators was studied both as monotherapy and in combination with standard chemotherapy drugs used to treat colorectal cancer. The Nrf2 inhibitor brusatol and the Nrf2 activator bardoxolone have antitumor activity. Moreover, bardoxolone and brusatol also significantly enhance the effect of the chemotherapy drugs 5-fluorouracil, oxaliplatin, and irinotecan metabolite SN-38. Thus, bardoxolone and brusatol can be considered promising candidates for further preclinical and clinical studies in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluoruracila , Irinotecano , Fator 2 Relacionado a NF-E2 , Organoides , Oxaliplatina , Quassinas , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Quassinas/farmacologia , Quassinas/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico
13.
J Oral Pathol Med ; 53(4): 238-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561906

RESUMO

BACKGROUND: The differences between existing preclinical models and the tumor microenvironment in vivo are one of the significant challenges hindering cancer therapy development. Patient-derived tumor organoids (PDTO) can highly retain tumor heterogeneity. Thus, it provides a more reliable platform for research in tumor biology, new drug screening, and precision medicine. METHODS: We conducted a systematic review to summarise the characteristics of the existing preclinical models, the advantages of patient-derived tumor organoids in reconstructing the tumor microenvironment, and the latest research progress. Moreover, this study deciphers organoid culture technology in the clinical precision treatment of head and neck cancer to achieve better transformation. Studies were identified through a comprehensive search of Ovid MEDLINE (Wolters Kluwer), PubMed (National Library of Medicine), web of Science (Thomson Reuters) and, Scopus (Elsevier) databases, without publication date or language restrictions. RESULTS: In tumor development, the interaction between cellular and non-cellular components in the tumor microenvironment (TME) has a crucial role. Co-culture, Air-liquid interface culture, microfluidics, and decellularized matrix have depicted great potential in reconstructing the tumor microenvironment and simulating tumor genesis, development, and metastasis. CONCLUSION: An accurate determination of stromal cells, immune cells, and extracellular matrix can be achieved by reconstructing the head and neck cancer tumor microenvironment using the PDTO model. Moreover, the interaction between head and neck cancer cells can also play an essential role in implementing the individualized precision treatment of head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Organoides , Medicina de Precisão , Microambiente Tumoral , Humanos , Organoides/patologia , Neoplasias de Cabeça e Pescoço/patologia , Técnicas de Cocultura
14.
Biochemistry (Mosc) ; 89(Suppl 1): S127-S147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621748

RESUMO

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.


Assuntos
Neoplasias , Medicina de Precisão , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Organoides , Avaliação Pré-Clínica de Medicamentos , Microambiente Tumoral
15.
Front Oncol ; 14: 1334631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496762

RESUMO

The 3D culture of intestinal organoids entails embedding isolated intestinal crypts and bone marrow mesenchymal stem cells within a growth factor-enriched matrix gel. This process leads to the formation of hollow microspheres with structures resembling intestinal epithelial cells, which are referred to as intestinal organoids. These structures encompass various functional epithelial cell types found in the small intestine and closely mimic the organizational patterns of the small intestine, earning them the name "mini-intestines". Intestinal tumors are prevalent within the digestive system and represent a significant menace to human health. Through the application of 3D culture technology, miniature colorectal organs can be cultivated to retain the genetic characteristics of the primary tumor. This innovation offers novel prospects for individualized treatments among patients with intestinal tumors. Presently established libraries of patient-derived organoids serve as potent tools for conducting comprehensive investigations into tissue functionality, developmental processes, tumorigenesis, and the pathobiology of cancer. This review explores the origins of intestinal organoids, their culturing environments, and their advancements in the realm of precision medicine. It also addresses the current challenges and outlines future prospects for development.

16.
Adv Healthc Mater ; 13(15): e2304206, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334216

RESUMO

Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.


Assuntos
Adipócitos , Omento , Neoplasias Ovarianas , Paclitaxel , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia , Animais , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Camundongos Nus , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos/métodos , Microambiente Tumoral/efeitos dos fármacos
17.
Theranostics ; 14(3): 1101-1125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250041

RESUMO

Cancer remains a severe public health burden worldwide. One of the challenges hampering effective cancer therapy is that the existing cancer models hardly recapitulate the tumor microenvironment of human patients. Over the past decade, tumor organoids have emerged as an in vitro 3D tumor model to mimic the pathophysiological characteristics of parental tumors. Various techniques have been developed to construct tumor organoids, such as matrix-based methods, hanging drop, spinner or rotating flask, nonadhesive surface, organ-on-a-chip, 3D bioprinting, and genetic engineering. This review elaborated on cell components and fabrication methods for establishing tumor organoid models. Furthermore, we discussed the application of tumor organoids to cancer modeling, basic cancer research, and anticancer therapy. Finally, we discussed current limitations and future directions in employing tumor organoids for more extensive applications.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Engenharia Genética , Organoides , Microambiente Tumoral
18.
Cancer Lett ; 584: 216650, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246222

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to late detection and limited treatment options. Some PDAC patients harbor alterations that qualify for targeted treatment strategies but develop acquired resistance, leading to treatment failure. We here report the ex vivo modeling of acquired drug resistance by creating a PDAC patient-derived tumor organoid (PDTO) model harboring a rare BRAF R506_K507ins VLR mutation resulting in a resistance to trametinib, a MEK inhibitor. Genomic and transcriptomic analyses revealed upregulated WNT signaling in resistant PDTO clones compared to treatment-naïve parental control cells. By combining genomic and transcriptomic analysis with a functional drug testing approach, we uncovered a de novo upregulation and circumventive reliance on WNT signaling in resistant PDTO clones. Ex vivo models such as PDTOs represent valuable tools for resistance modelling and offer the discovery of novel therapeutic approaches for patients in need where clinical diagnostic tools are currently at the limit.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Mutação , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Organoides/patologia
19.
Cancer Lett ; 584: 216608, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199587

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Pulmonares , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA , Genes p53 , Neoplasias Pulmonares/genética , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Aging (Albany NY) ; 16(1): 627-647, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38206305

RESUMO

BACKGROUND: Research has demonstrated that some tumor cells can transform into drug-tolerant persisters (DTPs), which serve as a reservoir for the recurrence of the disease. The persister state in cancer cells arises due to temporary molecular reprogramming, and exploring the genetic composition and microenvironment during the development of head and neck squamous cell carcinoma (HNSCC) can enhance our comprehension of the types of cell death that HNSCC, thus identifying potential targets for innovative therapies. This project investigated lipid-metabolism-driven ferroptosis and its role in drug resistance and DTP generation in HNSCC. METHODS: High levels of FSP1 were discovered in the tissues of patients who experienced relapse after cisplatin treatment. RNA sequencing indicated that a series of genes related to lipid metabolism were also highly expressed in tissues from these patients. Consistent results were obtained in primary DTP cells isolated from patients who experienced relapse. The Cancer Genome Atlas database confirmed this finding. This revealed that the activation of drug resistance in cancer cells is influenced by FSP1, intracellular iron homeostasis, and lipid metabolism. The regulatory roles of ferroptosis suppressor protein 1 (FSP1) in HNSCC metabolic regulation were investigated. RESULTS: We generated human oral squamous cell carcinoma DTP cells (HNSCC cell line) to cisplatin and observed higher expression of FSP1 and lipid-metabolism-related targets in vitro. The shFSP1 blockade attenuated HNSCC-DTP cell stemness and downregulated tumor invasion and the metastatic rate. We found that cisplatin induced FSP1/ACSL4 axis expression in HNSC-DTPC cells. Finally, we evaluated the HNSCC CSC-inhibitory functions of iFSP1 (a metabolic drug and ferroptosis inducer) used for neo-adjuvant chemotherapy; this was achieved by inducing ferroptosis in a patient-derived xenograft mouse model. CONCLUSIONS: The present findings elucidate the link between iron homeostasis, ferroptosis, and cancer metabolism in HNSCC-DTP generation and acquisition of chemoresistance. The findings may serve as a suitable model for cancer treatment testing and prediction of precision treatment outcomes. In conclusion, this study provides clinically oriented platforms for evaluating metabolism-modulating drugs (FSP1 inhibitors) and new drug candidates of drug resistance and ferroptotic biomarkers.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Homeostase , Ferro/uso terapêutico , Metabolismo dos Lipídeos , Lipídeos , Recidiva Local de Neoplasia , Recidiva , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA