Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Oncol ; 14: 1395618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764581

RESUMO

Despite multiple recent advances in systemic therapy for metastatic breast cancer, cases which display suboptimal response to guideline-driven treatment are frequently seen in the clinic. Effective options for such patients are limited, particularly in later line of therapy, and selection of optimal treatment options is essentially empirical and based largely on considerations of previous regimens received. Comprehensive cancer profiling includes detection of genetic alterations in tissue and circulating tumor DNA (ctDNA), immunohistochemistry (IHC) from re-biopsied metastatic disease, circulating tumor cells (CTCs), gene expression analysis and pharmacogenomics. The advent of this methodology and application to metastatic breast cancer, facilitates a more scientifically informed approach to identification of optimal systemic therapy approaches independent of the restrictions implied by clinical guidelines. Here we describe a case of metastatic breast cancer where consecutive comprehensive tumor profiling reveals ongoing tumor evolution, guiding the identification of novel effective therapeutic strategies.

2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766070

RESUMO

Background: Inflammatory breast cancer (IBC) is a rare and poorly characterized type of breast cancer with an aggressive clinical presentation. The biological mechanisms driving the IBC phenotype are relatively undefined-partially due to a lack of comprehensive, large-scale genomic studies and limited clinical cohorts. Patients and Methods: A retrospective analysis of 2457 patients with metastatic breast cancer who underwent targeted tumor-only DNA-sequencing was performed at Dana-Farber Cancer Institute. Clinicopathologic, single nucleotide variant (SNV), copy number variant (CNV) and tumor mutational burden (TMB) comparisons were made between clinically confirmed IBC cases within a dedicated IBC center versus non-IBC cases. Results: Clinicopathologic differences between IBC and non-IBC cases were consistent with prior reports-including IBC being associated with younger age at diagnosis, higher grade, and enrichment with hormone receptor (HR)-negative and HER2-positive tumors. The most frequent somatic alterations in IBC involved TP53 (72%), ERBB2 (32%), PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%). A multivariate logistic regression analysis revealed a significant enrichment in TP53 SNVs in IBC; particularly in HER2-positive and HR-positive disease which was associated with worse outcomes. Tumor mutational burden (TMB) did not differ substantially between IBC and non-IBC cases and a pathway analysis revealed an enrichment in NOTCH pathway alterations in HER2-positive disease. Conclusion: Taken together, this study provides a comprehensive, clinically informed landscape of somatic alterations in a large cohort of patients with IBC. Our data support higher frequency of TP53 mutations and a potential enrichment in NOTCH pathway activation-but overall; a lack of major genomic differences. These results both reinforce the importance of TP53 alterations in IBC pathogenesis as well as their influence on clinical outcomes; but also suggest additional analyses beyond somatic DNA-level changes are warranted.

3.
Genet Med ; 26(3): 101037, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054407

RESUMO

PURPOSE: To identify likely germline DNA variants from sequential tumor profiling data from hematopoietic malignancies (HMs). METHODS: The coefficient of variance was calculated from variant allele frequency of next-generation sequencing assays. Variants' likelihood of being germline was ranked on a 1 to 5 scale. Outcomes were examined in patients with such variants. RESULTS: In a pilot set of 33 genes, 89% of grade 1, 77% of grade 2, 62% of grade 3, 52% of grade 4, and 21% of grade 5 variants were confirmed to be germline. Among those, 22% were pathogenic or likely pathogenic in genes recognized as conferring hereditary HM risk, including BRCA1/2, CHEK2, CSF3R, and DDX41. To determine if this approach identified genes with known autosomal dominant inheritance, we analyzed sequential data from 1336 genes in 1135 HM patients. Among unique variants, 16% occurred in hereditary HM genes, and 15% were deleterious. Patients with grade 1/2 alleles had decreased survival 2 years after initial molecular testing (78% versus 88%, P = .0037) and increased all-cause mortality compared with those without (hazard ratio 2.02, 95% CI 1.18-3.46, P = .019). CONCLUSION: Variant germline status may be predicted using sequential tumor profiling and patients with likely germline variants experience inferior outcomes compared with those without.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Predisposição Genética para Doença , Proteína BRCA2/genética , Células Germinativas , Mutação em Linhagem Germinativa/genética
4.
Cell Rep Methods ; 3(3): 100417, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056380

RESUMO

Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteristics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it can provide individualized predictions of tumor growth under candidate therapies. This methodology can also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular , Genômica
5.
Front Oncol ; 13: 1084736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793609

RESUMO

Germline predisposition to hematopoietic malignancies is more common than previously appreciated, with several clinical guidelines advocating for cancer risk testing in an expanding pool of patients. As molecular profiling of tumor cells becomes a standard practice for prognostication and defining options for targeted therapies, recognition that germline variants are present in all cells and can be identified by such testing becomes paramount. Although not to be substituted for proper germline cancer risk testing, tumor-based profiling can help prioritize DNA variants likely to be of germline origin, especially when they are present on sequential samples and persist into remission. Performing germline genetic testing as early during patient work-up as possible allows time to plan allogeneic stem cell transplantation using appropriate donors and optimize post-transplant prophylaxis. Health care providers need to be attentive to the differences between molecular profiling of tumor cells and germline genetic testing regarding ideal sample types, platform designs, capabilities, and limitations, to allow testing data to be interpreted as comprehensively as possible. The myriad of mutation types and growing number of genes involved in germline predisposition to hematopoietic malignancies makes reliance on detection of deleterious alleles using tumor-based testing alone very difficult and makes understanding how to ensure adequate testing of appropriate patients paramount.

6.
Lab Med ; 54(1): e1-e9, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35706071

RESUMO

OBJECTIVES: Since 2019, the National Comprehensive Cancer Network (NCCN) has recommended genetic testing for patients diagnosed with pancreatic adenocarcinoma that includes universal germline testing and tumor gene profiling for metastatic, locally advanced, or recurrent disease. However, testing compliance with this guideline has not yet been published in the English literature. METHODS: A quality assurance/quality improvement retrospective review was done to identify patients diagnosed with pancreatic adenocarcinoma from January 2019 to February 2021 to include the patient's clinical status and genetic test results. RESULTS: There were 20 patient cases identified with pancreatic adenocarcinoma. A total of 11 cases had molecular tumor gene profiling and microsatellite instability/mismatch repair (MSI/MMR) testing performed and 1 case had only MSI/MMR testing by immunohistochemistry performed. Only 3 patients of the 20 in total received germline testing. CONCLUSION: There was a significant number of patients for whom tumor gene profiling or germline testing had never been attempted as per recommended NCCN guidelines.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Estudos Retrospectivos , Neoplasias Pancreáticas
7.
Front Cell Dev Biol ; 11: 1297219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328306

RESUMO

Ovarian cancer is a highly heterogeneous disease consisting of at least five different histological subtypes with varying clinical features, cells of origin, molecular composition, risk factors, and treatments. While most single-cell studies have focused on High grade serous ovarian cancer, a comprehensive landscape of the constituent cell types and their interactions within the tumor microenvironment are yet to be established in the different ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and various histotypes are also needed to connect molecular signatures to pathological grading for personalized diagnosis and tailored treatment. In this study, we leveraged high-resolution single-cell RNA sequencing technology to elucidate the cellular compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The diverse collection allowed us to deconstruct the histotypes and tumor site-specific expression patterns of cells in the tumor, and identify key marker genes and ligand-receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be used in improving precision disease stratification and optimizing treatment options.

8.
Am J Hum Genet ; 109(8): 1520-1533, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931053

RESUMO

Germline PTEN variants (PTEN hamartoma tumor syndrome [PHTS]) confer up to 85% lifetime risk of female breast cancer (BC). BCs arising in PHTS are clinically distinct from sporadic BCs, including younger age of onset, multifocality, and an increased risk of second primary BCs. Yet, there is no previous investigation into the underlying genomic landscape of this entity. We sought to address the hypothesis that BCs arising in PHTS have a distinct genomic landscape compared to sporadic counterparts. We performed and analyzed exome sequencing data from 44 women with germline PTEN variants who developed BCs. The control cohort comprised of 497 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. We demonstrate that PHTS-derived BCs have a distinct somatic mutational landscape compared to the sporadic counterparts, namely second somatic hits in PTEN, distinct mutational signatures, and increased genomic instability. The PHTS group had a significantly higher frequency of somatic PTEN variants compared to TCGA (22.7% versus 5.6%; odds ratio [OR] 4.93; 95% confidence interval [CI] 2.21 to 10.98; p < 0.001) and a lower mutational frequency in PIK3CA (22.7% versus 33.4%; OR 0.59; 95% CI 0.28 to 1.22; p = 0.15). Somatic variants in PTEN and PIK3CA were mutually exclusive in PHTS (p = 0.01) but not in TCGA. Our findings have important implications for the personalized management of PTEN-related BCs, especially in the context of more accessible genetic testing.


Assuntos
Neoplasias da Mama , Síndrome do Hamartoma Múltiplo , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Exoma/genética , Feminino , Genômica , Células Germinativas/patologia , Mutação em Linhagem Germinativa/genética , Síndrome do Hamartoma Múltiplo/genética , Humanos , PTEN Fosfo-Hidrolase/genética
9.
Adv Sci (Weinh) ; 9(24): e2201501, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35785523

RESUMO

Doxorubicin is a common treatment for breast cancer. However, not all patients respond to this drug, which sometimes causes life-threatening side effects. Accurately anticipating doxorubicin-resistant patients would therefore permit to spare them this risk while considering alternative treatments without delay. Stratifying patients based on molecular markers in their pretreatment tumors is a promising approach to advance toward this ambitious goal, but single-gene gene markers such as HER2 expression have not shown to be sufficiently predictive. The recent availability of matched doxorubicin-response and diverse molecular profiles across breast cancer patients permits now analysis at a much larger scale. 16 machine learning algorithms and 8 molecular profiles are systematically evaluated on the same cohort of patients. Only 2 of the 128 resulting models are substantially predictive, showing that they can be easily missed by a standard-scale analysis. The best model is classification and regression tree (CART) nonlinearly combining 4 selected miRNA isoforms to predict doxorubicin response (median Matthew correlation coefficient (MCC) and area under the curve (AUC) of 0.56 and 0.80, respectively). By contrast, HER2 expression is significantly less predictive (median MCC and AUC of 0.14 and 0.57, respectively). As the predictive accuracy of this CART model increases with larger training sets, its update with future data should result in even better accuracy.


Assuntos
Neoplasias da Mama , MicroRNAs , Algoritmos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Aprendizado de Máquina , MicroRNAs/genética
10.
Front Med (Lausanne) ; 9: 841441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721079

RESUMO

Neuroendocrine breast cancer (NEBC) is a rare entity accounting for <0.1% of all breast carcinomas and <0.1% of all neuroendocrine carcinomas. In most cases treatment strategies in NEBC are empirical in absence of prospective trial data on NEBC cohorts. Herein, we present two case reports diagnosed with anaplastic and small cell NEBC. After initial therapies failed, comprehensive tumor profiling was applied, leading to individualized treatment options for both patients. In both patients, targetable alterations of the PI3K/AKT/mTOR pathway were found, including a PIK3CA mutation itself and an STK11 mutation that negatively regulates the mTOR complex. The epicrisis of the two patients exemplifies how to manage rare and difficult to treat cancers and how new diagnostic tools contribute to medical management.

11.
Pediatr Blood Cancer ; 69(11): e29859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35713195

RESUMO

BACKGROUND: The association of childhood cancer with Lynch syndrome is not established compared with the significant pediatric cancer risk in recessive constitutional mismatch repair deficiency syndrome (CMMRD). PROCEDURE: We describe the clinical features, germline analysis, and tumor genomic profiling of patients with Lynch syndrome among patients enrolled in pediatric cancer genomic studies. RESULTS: There were six of 773 (0.8%) pediatric patients with solid tumors identified with Lynch syndrome, defined as a germline heterozygous pathogenic variant in one of the mismatch repair (MMR) genes (three with MSH6, two with MLH1, and one with MSH2). Tumor analysis demonstrated evidence for somatic second hits and/or increased tumor mutation burden in three of four patients with available tumor with potential implications for therapy and identification of at-risk family members. Only one patient met current guidelines for pediatric cancer genetics evaluation at the time of tumor diagnosis. CONCLUSION: Approximately 1% of children with cancer have Lynch syndrome, which is missed with current referral guidelines, suggesting the importance of adding MMR genes to tumor and hereditary pediatric cancer panels. Tumor analysis may provide the first suggestion of an underlying cancer predisposition syndrome and is useful in distinguishing between Lynch syndrome and CMMRD.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Encefálicas , Criança , Neoplasias Colorretais , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Síndromes Neoplásicas Hereditárias
12.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008949

RESUMO

Ataxia-telangiectasia mutated (ATM) functions as a key initiator and coordinator of DNA damage and cellular stress responses. ATM signaling pathways contain many downstream targets that regulate multiple important cellular processes, including DNA damage repair, apoptosis, cell cycle arrest, oxidative sensing, and proliferation. Over the past few decades, associations between germline ATM pathogenic variants and cancer risk have been reported, particularly for breast and pancreatic cancers. In addition, given that ATM plays a critical role in repairing double-strand breaks, inhibiting other DNA repair pathways could be a synthetic lethal approach. Based on this rationale, several DNA damage response inhibitors are currently being tested in ATM-deficient cancers. In this review, we discuss the current knowledge related to the structure of the ATM gene, function of ATM kinase, clinical significance of ATM germline pathogenic variants in patients with hereditary cancers, and ongoing efforts to target ATM for the benefit of cancer patients.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Predisposição Genética para Doença , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/química , Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Gerenciamento Clínico , Regulação da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Oxirredução , Estresse Oxidativo , Medicina de Precisão , Transdução de Sinais
13.
Patient Educ Couns ; 105(2): 452-459, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34016496

RESUMO

OBJECTIVE: To understand advanced cancer patients' experience of uncertainty when receiving comprehensive tumor genomic profiling (CTGP) results, and their perceptions of how healthcare provider (HCP) communication impacts uncertainty. METHODS: Thirty-seven semi-structured interviews with advanced cancer patients were conducted within two weeks of patients receiving CTGP results. Transcripts were thematically analyzed, using an inductive approach. RESULTS: We identified three themes that illustrate patient experience of uncertainties when receiving CTGP results: 1. Type and degree of uncertainty fluctuates along with changing illness circumstances and the nature of the CTGP results; 2. HCPs' co-ordination of care and communication shapes uncertainty, with immediate, clearer and simpler information promoting certainty; and 3. Patients felt that communicating results to reduce relatives' uncertainty is important, with patients choosing the time and process for achieving this and desiring HCPs support. CONCLUSION: Oncology patients are confronted with an array of uncertainties. Clear, simple communication from HCPs about results and their implications, and support to manage uncertainty, will be of benefit. PRACTICE IMPLICATIONS: If CTGP is to become routine clinical practice, clear communication will be crucial in reducing uncertainty. Awareness of potential uncertainties experienced by patients when receiving results, will assist HCPs to address uncertainties, reduce uncertainty where possible, and offer targeted support to patients struggling with uncertainty.


Assuntos
Genômica , Neoplasias , Comunicação , Pessoal de Saúde , Humanos , Oncologia , Neoplasias/genética , Neoplasias/terapia , Pesquisa Qualitativa , Incerteza
14.
Front Oncol ; 12: 1092201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686738

RESUMO

Introduction: Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods: In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion: A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.

15.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360727

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HL (RCC)) entails cutaneous and uterine leiomyomatosis with aggressive type 2 papillary RCC-like histology. HLRCC is caused by pathogenic variants in the FH gene, which encodes fumarate hydratase (FH). Here, we describe an episode of young-onset RCC caused by a genomic FH deletion that was diagnosed via clinical sequencing. A 35-year-old woman was diagnosed with RCC and multiple metastases: histopathological analyses supported a diagnosis of FH-deficient RCC. Although the patient had neither skin tumors nor a family history of HLRCC, an aggressive clinical course at her age and pathological diagnosis of FH-deficient RCC suggested a germline FH variant. After counseling, the patient provided written informed consent for germline genetic testing. She was simultaneously subjected to paired tumor profiling tests targeting the exome to identify a therapeutic target. Although conventional germline sequencing did not detect FH variants, exome sequencing revealed a heterozygous germline FH deletion. As such, paired tumor profiling, not conventional sequencing, was required to identify this genetic deletion. RCC caused by a germline FH deletion has hitherto not been described in Japan, and the FH deletion detected in this patient was presumed to be of maternal European origin. Although the genotype-phenotype correlation in HLRCC-related tumors is unclear, the patient's family was advised to undergo genetic counseling to consider additional RCC screening.


Assuntos
Fumarato Hidratase/deficiência , Deleção de Genes , Mutação em Linhagem Germinativa , Leiomiomatose/genética , Erros Inatos do Metabolismo/genética , Hipotonia Muscular/genética , Síndromes Neoplásicas Hereditárias/genética , Transtornos Psicomotores/genética , Neoplasias Cutâneas/genética , Neoplasias Uterinas/genética , Adulto , Feminino , Fumarato Hidratase/genética , Testes Genéticos , Humanos
16.
J Pers Med ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34357101

RESUMO

Lynch syndrome patients with synchronous endometrial and ovarian cancer (SEOC) are rare. When these cases occur, they are most often endometrioid histology and early grade. Early-grade tumors are not often sent for somatic tumor profiling. We present a 39 year old SEOC patient with germline PMS2 Lynch syndrome and clinical tumor analysis leading to insight regarding the origin and cause of these tumors, with potential therapy options. PMS2-related SEOC is less common due to lower risks for these cancers associated with germline PMS2 mutation compared to other Lynch genes. While synchronous cancers are not common, they are more likely to occur with Lynch syndrome. Tumor profiling with next-generation sequencing of 648 genes identified sixteen shared somatic actionable and biologically relevant mutations. This case is a rare example of a patient with PMS2 germline Lynch syndrome with shared somatic variants that demonstrate clonality of the two tumors arising from one common site.

17.
Cancers (Basel) ; 13(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298662

RESUMO

This study investigated a case of Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a tumor profiling test approved by the U.S. Food and Drug Administration (FDA) in 2017, to examine what factors would contribute to healthcare innovation. First, we set the following three parameters to observe cases: (i) the FDA regulatory reforms, (ii) early application of new technologies, such as next-generation sequencing (NGS), to both research and clinical settings, and (iii) accumulation of open data. Then, we performed a comparative analysis of MSK-IMPACT with FoundationOne CDx and Oncomine Dx Target Test, both of which were FDA-approved tumor profiling tests launched in 2017. As a result, we found that MSK-IMPACT secures neutrality as a non-profit organization, achieves the active incorporation of basic research results, and performs superiorly in clinical operations, such as patient enrollment. On the contrary, we confirmed that FoundationOne CDx was the most prominent case in terms of the number of new drugs and expanded indications approved in which the FDA's expedited approval programs were considerably utilized. Consequently, to uncover the full potential of MSK-IMPACT, it is suggested that more intersectoral collaborative activities between various healthcare stakeholders, in particular, pharmaceutical companies, for driving clinical development must be carried out based on an organizational framework that facilitates collaboration.

18.
Breast Cancer Res ; 23(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407744

RESUMO

BACKGROUND: Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease. METHODS: We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor's matched primary. RESULTS: Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression alterations were common-including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers. CONCLUSIONS: Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-resistant breast cancer subtype with basal-like transcriptional reprogramming.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Recidiva , Transcriptoma
19.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327492

RESUMO

Hereditary gynecological cancers are caused by several inherited genes. Tumors that arise in the female reproductive system, such as ovaries and the uterus, overlap with hereditary cancers. Several hereditary cancer-related genes are important because they might lead to therapeutic targets. Treatment of hereditary cancers should be updated in line with the advent of various new methods of evaluation. Next-generation sequencing has led to rapid, economical genetic analyses that have prompted a concomitant and significant paradigm shift with respect to hereditary cancers. Molecular tumor profiling is an epochal method for determining therapeutic targets. Clinical treatment strategies are now being designed based on biomarkers based on tumor profiling. Furthermore, the National Comprehensive Cancer Network (NCCN) guidelines significantly changed the genetic testing process in 2020 to initially consider multi-gene panel (MGP) evaluation. Here, we reviewed the molecular features and clinical management of hereditary gynecological malignancies, such as hereditary breast and ovarian cancer (HBOC), and Lynch, Li-Fraumeni, Cowden, and Peutz-Jeghers syndromes. We also reviewed cancer-susceptible genes revealed by MGP tests.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Neoplasias da Mama/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Feminino , Predisposição Genética para Doença/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
Clin Hemorheol Microcirc ; 76(2): 123-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925020

RESUMO

BACKGROUND: The ability to evaluate tumor development within experimental oncology is of upmost importance. However, determining tumor volumes in 3D in vivo tumor models is challenging. The chick chorioallantoic membrane (CAM) model represents an optimized xenograft model that surpasses many disadvantages that are inherent to rodent models and provides the opportunity of real-time monitoring of tumor growth. OBJECTIVE: The objective of this study was to introduce a new method that enables monitoring of tumor growth within the CAM model throughout the course of the experiment. METHODS: Sarcoma cell lines and sarcoma primary tumors were grafted onto the CAM of fertilized chicken eggs. A digital microscope (Keyence VHX-6000) was used for 3D volume monitoring before and after tumor excision and compared it to tumor weight. RESULTS: Accuracy of tumor volumes was validated through correlation with tumor weight. In and ex ovo tumor volumes correlated significantly with tumor weight values. CONCLUSIONS: The described method can be used to assess the effects of chemotherapeutic agents on the growth of tumors that have been grafted onto the CAM and further advance personalized cancer therapy. In summary, we established a promising protocol that enables in vivo real-time tracking of tumor growth in the CAM model using a digital microscope.


Assuntos
Membrana Corioalantoide/metabolismo , Neoplasias/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Galinhas , Modelos Animais de Doenças , Humanos , Imageamento Tridimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA