Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep Med ; 5(8): 101658, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053460

RESUMO

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.


Assuntos
Neoplasias Encefálicas , Receptor gp130 de Citocina , Resistencia a Medicamentos Antineoplásicos , Células Mieloides , Transdução de Sinais , Temozolomida , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Camundongos , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioma/patologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Dano ao DNA/efeitos dos fármacos
2.
J Neuroimmunol ; 393: 578402, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996717

RESUMO

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Assuntos
Neoplasias Encefálicas , Toxoplasmose , Animais , Camundongos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Toxoplasmose/imunologia , Toxoplasma/imunologia , Meduloblastoma/imunologia , Meduloblastoma/patologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Transgênicos , Feminino
3.
Int J Cancer ; 154(12): 2031-2042, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38500385

RESUMO

Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.


Assuntos
Exossomos , Células Supressoras Mieloides , Neoplasias , Humanos , Exossomos/patologia , Neoplasias/patologia , Terapia de Imunossupressão , Células Mieloides , Microambiente Tumoral
4.
Cell Rep ; 43(1): 113661, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175754

RESUMO

Myeloid-derived suppressor cells (MDSCs) impair antitumor immune responses. Identifying regulatory circuits during MDSC development may bring new opportunities for therapeutic interventions. We report that the V-domain suppressor of T cell activation (VISTA) functions as a key enabler of MDSC differentiation. VISTA deficiency reduced STAT3 activation and STAT3-dependent production of polyamines, which causally impaired mitochondrial respiration and MDSC expansion. In both mixed bone marrow (BM) chimera mice and myeloid-specific VISTA conditional knockout mice, VISTA deficiency significantly reduced tumor-associated MDSCs but expanded monocyte-derived dendritic cells (DCs) and enhanced T cell-mediated tumor control. Correlated expression of VISTA and arginase-1 (ARG1), a key enzyme supporting polyamine biosynthesis, was observed in multiple human cancer types. In human endometrial cancer, co-expression of VISTA and ARG1 on tumor-associated myeloid cells is associated with poor survival. Taken together, these findings unveil the VISTA/polyamine axis as a central regulator of MDSC differentiation and warrant therapeutically targeting this axis for cancer immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Neoplasias/patologia , Poliaminas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T
5.
Mol Ther ; 32(1): 241-256, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37927036

RESUMO

Oncolytic virotherapy aims to activate host antitumor immunity. In responsive tumors, intratumorally injected herpes simplex viruses (HSVs) have been shown to lyse tumor cells, resulting in local inflammation, enhanced tumor antigen presentation, and boosting of antitumor cytotoxic lymphocytes. In contrast to HSV, cytomegalovirus (CMV) is nonlytic and reprograms infected myeloid cells, limiting their antigen-presenting functions and protecting them from recognition by natural killer (NK) cells. Here, we show that when co-injected into mouse tumors with an oncolytic HSV, mouse CMV (mCMV) preferentially targeted tumor-associated myeloid cells, promoted the local release of proinflammatory cytokines, and enhanced systemic antitumor immune responses, leading to superior control of both injected and distant contralateral tumors. Deletion of mCMV genes m06, which degrades major histocompatibility complex class I (MHC class I), or m144, a viral MHC class I homolog that inhibits NK activation, was shown to diminish the antitumor activity of the HSV/mCMV combination. However, an mCMV recombinant lacking the m04 gene, which escorts MHC class I to the cell surface, showed superior HSV adjuvanticity. CMV is a potentially promising agent with which to reshape and enhance antitumor immune responses following oncolytic HSV therapy.


Assuntos
Infecções por Citomegalovirus , Herpesvirus Humano 1 , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Herpesvirus Humano 1/genética , Citomegalovirus , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Apresentação de Antígeno , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo
6.
J Hematol Oncol ; 16(1): 71, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415162

RESUMO

Tumor-associated myeloid cells (TAMCs) are among the most important immune cell populations in the tumor microenvironment, and play a significant role on the efficacy of immune checkpoint blockade. Understanding the origin of TAMCs was found to be the essential to determining their functional heterogeneity and, developing cancer immunotherapy strategies. While myeloid-biased differentiation in the bone marrow has been traditionally considered as the primary source of TAMCs, the abnormal differentiation of splenic hematopoietic stem and progenitor cells, erythroid progenitor cells, and B precursor cells in the spleen, as well as embryo-derived TAMCs, have been depicted as important origins of TAMCs. This review article provides an overview of the literature with a focus on the recent research progress evaluating the heterogeneity of TAMCs origins. Moreover, this review summarizes the major therapeutic strategies targeting TAMCs with heterogeneous sources, shedding light on their implications for cancer antitumor immunotherapies.


Assuntos
Neoplasias , Humanos , Células Mieloides , Imunoterapia , Medula Óssea/patologia , Células-Tronco Hematopoéticas , Microambiente Tumoral
7.
Front Mol Biosci ; 10: 1118377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959981

RESUMO

Myeloid cells are physiologically related to innate immunity and inflammation. Tumor-associated myeloid cells gained increasing interest because of their critical roles in tumor progression and anticancer immune responses in human malignancies. However, the associations between tumor-associated myeloid cell-related genes and hepatocellular carcinoma have yet to be revealed. Here, through the integrating analysis of bulk and single-cell RNA (scRNA) sequencing of public HCC samples, we developed a gene signature to investigate the role of HCC-specific myeloid signature genes in HCC patients. We firstly defined 317 myeloid cell marker genes through analyzing scRNA data of HCC from the GEO dataset. After selecting the differentially expressed genes, eleven genes were also proved prognostic. Then we built a gene signature from the TCGA cohort and verified further with the ICGC dataset by applying the LASSO Cox method. An eight genes signature (FABP5, C15orf48, PABPC1, TUBA1B, AKR1C3, NQO1, AKR1B10, SPP1) was achieved finally. Patients in the high risk group correlated with higher tumor stages and poor survival than those in the low-risk group. The risk score was proved to be an independent risk factor for prognosis. The high risk group had higher infiltrations of dendritic cells, macrophages and Tregs. And the APC co-inhibition, T cell co-inhibition pathways were also activated. Besides, the risk score positively correlated with multidrug resistance proteins. In conclusion, our myeloid cell marker genes related signature can predict patients' survival and may also indicate the levels of immune infiltration and drug resistance.

8.
Front Immunol ; 13: 1026954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325334

RESUMO

Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.


Assuntos
Ativação de Macrófagos , Neoplasias , Humanos , Macrófagos , Microambiente Tumoral , Transdução de Sinais
9.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742884

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has up to half the tumor mass of tumor-associated myeloid cells. Myeloid innate immune cells play important roles in regulating cancer cell recognition and tumor growth. PDAC cells often mold myeloid cells into pro-tumoral state to fuel cancer growth and induce immune suppression. However, how tumor cells educate the innate immune responses remains largely unknown. In this study, we used four different human PDAC cell lines (PANC1, BxPC3, AsPC1, and CFPAC1) to establish the zebrafish xenograft model and investigated the interaction between pancreatic cancer and innate immune cells. The primary tumor-derived cancer cells PANC1 and BxPC3 activated innate immune anti-tumoral responses efficiently, while cancer cells from metastatic tissues AsPC1 and CFPAC1 induced an innate immune suppression and educated innate immune cells towards pro-tumoral state. Chemical conversion of innate immune cells to anti-tumoral state inhibited tumor growth for AsPC1 and CFPAC1. Moreover, genetic and pharmacological inhibition of macrophages also significantly reduced tumor growth, supporting the important roles of macrophages in innate immune suppression. REG4 expression is high in AsPC1 and CFPAC1. Knockdown of REG4 induced innate immune activation and reduced tumor growth in the xenografts, indicating that REG4 is a beneficial target for PDAC therapy. Our study provides a fast in-vivo model to study PDAC-innate immune interaction and their plasticity that could be used to study the related mechanism as well as identify new drugs to enhance immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunidade Inata , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Peixe-Zebra , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35158779

RESUMO

In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.

11.
Cancer Cell ; 39(12): 1594-1609.e12, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767762

RESUMO

Immunotherapy is a mainstay of non-small cell lung cancer (NSCLC) management. While tumor mutational burden (TMB) correlates with response to immunotherapy, little is known about the relationship between the baseline immune response and tumor genotype. Using single-cell RNA sequencing, we profiled 361,929 cells from 35 early-stage NSCLC lesions. We identified a cellular module consisting of PDCD1+CXCL13+ activated T cells, IgG+ plasma cells, and SPP1+ macrophages, referred to as the lung cancer activation module (LCAMhi). We confirmed LCAMhi enrichment in multiple NSCLC cohorts, and paired CITE-seq established an antibody panel to identify LCAMhi lesions. LCAM presence was found to be independent of overall immune cell content and correlated with TMB, cancer testis antigens, and TP53 mutations. High baseline LCAM scores correlated with enhanced NSCLC response to immunotherapy even in patients with above median TMB, suggesting that immune cell composition, while correlated with TMB, may be a nonredundant biomarker of response to immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Análise de Célula Única/métodos , Humanos
12.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571905

RESUMO

GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences f the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Microambiente Tumoral/imunologia , Animais , Humanos
13.
Immunotherapy ; 13(14): 1179-1192, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424031

RESUMO

Aims: We investigated immunogenomic signatures and correlated them with survival in ovarian cancer (OV) and endometrial cancer (EC). Materials & method: We used whole transcriptome sequencing data from uterine serous cancer and The Cancer Genome Atlas data of OV and EC (n = 719). Gene expression score was calculated. Population abundance of immune cells were estimated. Results: TGF-ß, myeloid cells, IFN-γ, T cells, B cells and endothelial cells predicted overall survival. Whereas CD47, neutrophils and endothelial cells predicted progression-free survival. In multivariate analyses, TGF-ß, CD47 and monocytic cells predicted survival in high levels of microsatellite instability (MSI-H) EC whereas high IFN-γ trended toward improved survival in the MSI-S EC. High IFN-γ/low TGF-ß and high IFN-γ/low CD47 signatures predicted longer overall survival. Low TGF-ß/low CD47 signature predicted longer overall survival only in the MSI-H EC. Conclusion: Our data support the role of immune markers in predicting survival in OV/EC.


Lay abstract We studied the association of immune markers and immune cells with survival outcome in ovarian and endometrial cancers. We performed gene expression analyses on tumor tissue of 719 patients. We generated signatures for the immune cells and markers and correlated them with survival outcome. We showed that specific immune cells and markers correlated strongly with survival even after we adjusted for other confounding factors. Further, we showed that these immune markers and immune cells have different correlation with survival when stratified in subtypes of endometrial cancer. Our data support the role of these immune markers in predicting survival outcome in ovarian and endometrial cancers.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias do Endométrio/imunologia , Neoplasias Ovarianas/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Estudos Retrospectivos , Sequenciamento do Exoma
14.
Cancers (Basel) ; 13(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359800

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function. Hence, the delivery of chemotherapeutics into GBM can be compromised. Furthermore, leaky vessels support edema-formation, which can result in severe neurological deficits. The secreted signaling peptide Apelin (APLN) plays an important role in the formation of GBM blood vessels. Both APLN and the Apelin receptor (APLNR) are upregulated in GBM cells and control tumor cell invasiveness. Here we summarize the current evidence on the role of APLN/APLNR signaling during brain tumor pathology. We show that targeting APLN/APLNR can induce anti-angiogenic effects in GBM and simultaneously blunt GBM cell infiltration. In addition, we discuss how manipulation of APLN/APLNR signaling in GBM leads to the normalization of tumor vessels and thereby supports chemotherapy, reduces edema, and improves anti-tumorigenic immune reactions. Hence, therapeutic targeting of APLN/APLNR signaling offers an interesting option to address different pathological hallmarks of GBM.

15.
Front Immunol ; 12: 694801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295336

RESUMO

Purpose: To evaluate the value of C1QC+ and SPP1+ TAMs gene signatures in patients with cervical cancer. Methods: We compare the C1QC+ and SPP1+ TAMs gene signatures with the M1/M2 gene signatures at single cell level and bulk RNA-seq level and evaluate which gene signature can clearly divide TAMs and patients with cervical cancer into distinct clinical subclusters better. Results: At single-cell level, C1QC+ and SPP1+ TAMs gene signatures, but not M1 and M2 gene signatures, could clearly divided TAMs into two subclusters in a colon cancer data set and an advanced basal cell data set. For cervical cancer data from TCGA, patients with C1QChigh and SPP1low TAMs gene signatures have the best prognosis, lowest proportion (34.21%) of locally advanced cervical cancer (LACC), and highest immune cell infiltration, whereas patients with C1QClow and SPP1high TAMs gene signatures have the worst prognosis, highest proportion (71.79%) of LACC and lowest immune cell infiltration. Patients with C1QChigh and SPP1low TAMs gene signature have higher expression of most of the Immune checkpoint molecules (ICMs) than patients with C1QClow and SPP1high TAMs gene signatures. The GSEA results suggested that subgroups of patients divided by C1QC+ and SPP1+ TAMs gene signatures showed different anti- or pro-tumor state. Conclusion: C1QC+ and SPP1+ TAMs gene signatures, but not M1/M2 gene signatures, can divide cervical patients into subgroups with different prognosis, tumor stage, different immune cell infiltration, and ICMs expression. Our findings may help to find suitable treatment strategy for cervical cancer patients with different TAMs gene signatures.


Assuntos
Biomarcadores Tumorais/genética , Complemento C1q/genética , Perfilação da Expressão Gênica , Osteopontina/genética , Transcriptoma , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Tomada de Decisão Clínica , Bases de Dados Genéticas , Feminino , Humanos , Proteínas de Checkpoint Imunológico/genética , Imunoterapia , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Prognóstico , RNA-Seq , Análise de Célula Única , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia , Adulto Jovem
16.
Cancers (Basel) ; 13(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34298846

RESUMO

Glioblastoma (GBM) recurrence after treatment is almost inevitable but addressing this issue with adequate preclinical models has remained challenging. Here, we introduce a GBM mouse model allowing non-invasive and scalable de-bulking of a tumor mass located deeply in the brain, which can be combined with conventional therapeutic approaches. Strong reduction of the GBM volume is achieved after pharmacologically inducing a tumor-specific cell death mechanism. This is followed by GBM re-growth over a predictable timeframe. Pharmacological de-bulking followed by tumor relapse was accomplished with an orthotopic mouse glioma model. Relapsing experimental tumors recapitulated pathological features often observed in recurrent human GBM, like increased invasiveness or altered immune cell composition. Orthotopic implantation of GBM cells originating from biopsies of one patient at initial or follow-up treatment reproduced these findings. Interestingly, relapsing GBM of both models contained a much higher ratio of monocyte-derived macrophages (MDM) versus microglia than primary GBM. This was not altered when combining pharmacological de-bulking with invasive surgery. We interpret that factors released from viable primary GBM cells preferentially attract microglia whereas relapsing tumors preponderantly release chemoattractants for MDM. All in all, this relapse model has the capacity to provide novel insights into clinically highly relevant aspects of GBM treatment.

17.
Front Oncol ; 11: 691705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150664

RESUMO

Multiple myeloma (MM) is a lethal hematological malignancy characterized by abundant myeloid cells in the microenvironment that fuel tumor progression. But the mechanism by which myeloid cells support myeloma cells has not been fully explored. We aimed to examine their effect on bone marrow cells of MM patients by scRNA-seq transcriptome analysis and reveal a high-resolution gene profile of myeloma cells and myeloma-associated myeloid cells. Based on correlation analysis of integrated scRNA-seq and bulk RNA-seq datasets from patients, we confirmed that myeloid-derived S100A9 was involved in TNFSF13B-dependent myeloma cell proliferation and survival. In the animal experiments, S100A9 was found to be critical for MM cell proliferation and survival via TNFSF13B production by myeloid cells, neutrophils, and macrophages. In-vitro analysis of patient primary myeloma cells further demonstrated that enhanced TNFSF13B signaling triggered the canonical NF-κB pathway to boost tumor cell proliferation. All these results suggest that myeloid-derived S100A9 is required for TNFSF13B/TNFRSF13B-dependent cell-fate specification, which provides fresh insights into MM progression.

18.
Adv Cancer Res ; 149: 171-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579424

RESUMO

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Microbioma Gastrointestinal , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/microbiologia , Humanos , Sistema Imunitário/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/microbiologia
19.
Front Immunol ; 11: 1633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849557

RESUMO

The clinical success of cancer immunotherapies targeting PD-1 and CTLA-4 has ignited a substantial research effort to improve our understanding of tumor immunity. Recent studies have revealed that the immune contexture of a tumor influences therapeutic response and survival benefit for cancer patients. Identifying treatment modalities that limit immunosuppression, relieve T cell exhaustion, and potentiate effector functions in the tumor microenvironment (TME) is of much interest. In particular, combinatorial therapeutic approaches that re-educate the TME by limiting the accumulation of immunosuppressive immune cells, such as Foxp3 regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), while promoting CD8+ and CD4+ effector T cell activity is critical. Here, we review key approaches to target these immunosuppressive immune cell subsets and signaling molecules and define the impact of these changes to the tumor milieu. We will highlight the preclinical and clinical evidence for their ability to improve anti-tumor immune responses as well as strategies and challenges for their implementation. Together, this review will provide understanding of therapeutic approaches to efficiently shape the TME and reinvigorate the immune response against cancer.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular/imunologia , Terapia Combinada/métodos , Citotoxicidade Imunológica , Humanos , Imunomodulação , Terapia de Alvo Molecular/métodos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/terapia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
20.
Front Immunol ; 11: 1395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733461

RESUMO

Over the past decade, cancer immunotherapy has been steering immune responses toward cancer cell eradication. However, these immunotherapeutic approaches are hampered by the tumor-promoting nature of myeloid cells, including monocytes, macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly, the most primordial defense responses employed by myeloid cells against pathogens, such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis, actually seem to favor cancer progression. In this review, we discuss how rudimentary defense mechanisms deployed by myeloid cells can promote tumor progression.


Assuntos
Imunidade Inata/imunologia , Imunoterapia/métodos , Células Mieloides/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Evasão Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA