RESUMO
Eliciting tumour microenvironment (TME) activation in triple-negative breast cancer (TNBC) is crucial for effective anti-tumour therapies. The aim of this study is to employ pharmaceutical approaches to precisely deliver Ganoderma polysaccharide (GPS) to tumour sites, thereby enhancing TME activation. We first established a direct link between the accumulation of GPS within tumours and its efficacy in the TME activation. Building upon this insight, we then engineered a mannose/hyaluronic acid dual-coated GPS-loaded superparamagnetic iron oxide nanocomplex (Man/HA/GPS-SPIONs) with a particle size of 33.8 ± 1.6 nm and a zeta potential of -22.4 ± 3.5 mV, capable of precise tumour accumulation through magnet-assisted targeting and internalisation by tumour-associated macrophages (TAMs) and tumour cells, facilitated by dual ligand modification. In vitro, Man/HA/GPS-SPIONs effectively induced M1 polarisation of macrophages (CD86+ cells: 38.6 ± 2.8%), curbed 4T1 cell proliferation (viability: 47.3 ± 2.9%) and heightened Th1 cytokine release. Significantly, in vivo, Man/HA/GPS-SPIONs notably suppressed tumour growth (tumour index: 0.048 ± 0.005), fostered M1 polarisation of TAMs (CD45+F4/80+CD86+ cells: 26.1 ± 7.2%), consequently bolstering intratumoural T cytotoxic cells. This enhancement was intricately tied to the efficient co-delivery of GPS and iron ions to the tumours, made possible by the Man/HA/GPS-SPIONs delivery system. The synergistic effects with paclitaxel (PTX, inhibition rate: 61.2 ± 4.3%) and PD-1 inhibitors (inhibition rate: 69.8 ± 7.6%) underscored the translational potential of this approach. By harnessing a well-conceived iron-based drug delivery strategy, this study amplifies the tumour immune modulatory potential of natural polysaccharides, offering insightful guidance for interventions in the TME and synergistic therapies.
RESUMO
OBJECTIVE: This study aims to investigate the effect of CD206 on the progression of hepatocellular carcinoma (HCC) and the regulation of the tumour immune microenvironment. METHODS: A subcutaneous mouse model of HCC was established and treated with CD206-overexpressing adenovirus by tail vein injection or CD206 antibody C068C2 by intratumoral injection. The hepatocarcinoma-bearing mice were divided into four groups (IgG+ tail vein adenovirus group, IgG group, C068C2+ tail vein adenovirus group and C068C2 group) to observe the changes in tumour weight and volume with different expression levels of CD206. The proportion of M2-type tumour-associated macrophages (TAMs) was detected by flow cytometry and immunofluorescence. The apoptosis of tumour cells was detected using terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining, and inflammatory factors in serum and tissues were detected using the ENZYME-LINKED IMMUNOSORBENT ASSAY. RESULTS: Compared with the mice with low CD206 expression, the hepatocarcinoma-bearing mice with high CD206 expression in HCC exhibited faster tumour growth and more aggressive progression. Flow cytometry and immunofluorescence staining revealed that the expression level of CD206-positive M2-type TAMs was highest in the IgG + adenovirus group and lowest in the C068C2 group (p < 0.001). Compared with the IgG + adenovirus group, the proportion of TUNEL-positive cells in tumour cells was significantly reduced in the C068C2 group. The IgG + adenovirus group had the highest concentrations of transforming growth factor-ß (TGF-ß) and interleukin 6 (IL-6) in both serum and tumour tissues. CONCLUSION: The overexpression of CD206 accelerates the progression of HCC and changes the tumour immune microenvironment. The high expression of CD206 in HCC increases the M2-type polarisation of TAMs and induces the expression of both TGF-ß and IL-6 in tumour tissues and serum, thereby promoting HCC progression.
RESUMO
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Assuntos
Carcinoma Hepatocelular , Epigênese Genética , Imunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Imunoterapia/métodos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Microambiente Tumoral/imunologia , Animais , Regulação Neoplásica da Expressão GênicaRESUMO
The deregulation of monounsaturated, polyunsaturated, and saturated fatty acids (MUFAs, PUFAs, SFAs) from de novo synthesis and hypoxia are central metabolic features of breast tumour. Early response markers for neoadjuvant chemotherapy (NACT) are critical for stratified treatment for patients with breast cancer, and restoration of lipid metabolism and normoxia might precede observable structural change. In this study, we hypothesised that peri-tumoural lipid composition and hypoxia might be predictive and early response markers in patients with breast cancer undergoing NACT. Female patients with breast cancer were scanned on a 3T clinical MRI scanner at baseline and Cycle1, with acquisition of lipid composition maps of MUFAs, PUFAs, and SFAs, and hypoxia maps of effective transverse relaxation rate R2*. The percentage change in lipid composition and hypoxia at Cycle1 was calculated with reference to baseline. Tumour-associated macrophages were analysed based on immunostaining of CD163 from biopsy and resection, with the percentage change in the resected tumour calculated across the entire NACT. We found no significant difference in lipid composition and R2* between good and poor responders at baseline and Cycle1; however, the correlation between the percentage change in MUFAs and PUFAs against CD163 suggested the modulation in lipids with altered immune response might support the development of targeted therapies.
Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Adulto , Metabolismo dos Lipídeos/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Idoso , Ácidos Graxos/metabolismo , Lipídeos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Hipóxia/metabolismoRESUMO
Cells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties. Here, we summarize the current literature regarding the effects of solid cancers on HSPCs function and discuss how these effects might shape antitumour responses via a mechanism initiated at a site distal from the tumour microenvironment.
Assuntos
Mielopoese , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Células-Tronco Hematopoéticas/patologia , Microambiente Tumoral/imunologia , AnimaisRESUMO
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Assuntos
Imunidade Inata , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , AnimaisRESUMO
OBJECTIVE: To assess the infiltration characteristics of tumour-associated macrophages (TAMs) in buccal mucosa carcinoma (BMC) and the correlation of these features with clinicopathological factors. MATERIALS AND METHODS: Immunohistochemistry was used to detect the expression of TAM-related markers (CD68, CD163, CD206), CD8+ T cell markers, PD-L1, and epidermal growth factor receptor (EGFR) in 46 patients with mucosal cancer after radical surgery. In addition, the correlation between TAM infiltration and clinical characteristics, PD-L1 expression, and EGFR expression was analysed. RESULTS: A high infiltration level of M2-polarized (CD206+) TAMs and M2-polarized (CD163+) TAMs was more common in stage T3-T4, N+, III-IV patients than in other patient groups (P < 0.05). The infiltration degree of M2-polarized (CD68+) TAMs was positively correlated with the PD-L1 TPS (P = 0.0331). The infiltration level of M2-polarized (CD206+) TAMs was higher in the EGFR high expression group than in the EGFR low expression group (P = 0.040). CONCLUSION: High infiltration of M2-polarized TAMs is highly associated with advanced disease stage and higher expression of PD-L1 and EGFR in BMCs, suggesting that M2-polarized TAMs infiltration can serve as a potential therapeutic target.
RESUMO
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Medicina de Precisão , Macrófagos/imunologia , AnimaisRESUMO
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral/imunologia , Prognóstico , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos/metabolismoRESUMO
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells. Understanding of the TME can provide new therapeutic options for patients with DLBCL and improve their prognosis and overall survival. This review provides essentials of the latest understanding of tumour microenvironment elements and discusses their role in tumour progression and immune suppression mechanisms which result in poor prognosis for patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and highlight novel therapeutic targets.
Assuntos
Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/imunologia , Animais , Células Supressoras Mieloides/patologia , Células Supressoras Mieloides/imunologiaRESUMO
Macrophages play essential roles in maintaining tissue homeostasis and immune defence. However, their extensive infiltration into tumours has been linked to adverse outcomes in multiple human cancers. Within the tumour microenvironment (TME), tumour-associated macrophages (TAMs) promote tumour growth and metastasis, making them prime targets for cancer immunotherapy. Recent single-cell analysis suggest that proliferating TAMs accumulate in human cancers, yet their origins and differentiation pathways remain uncertain. Here, we show that a subpopulation of CD163+ TAMs proliferates in situ within the TME of melanoma, lung cancer, and breast cancer. Consistent with their potential role in suppressing anti-tumour activities of T cells, CD163+ TAMs express a range of potent immunosuppressive molecules, including PD-L1, PD-L2, IL-10, and TGF-ß. Other phenotypic markers strongly suggested that these cells originate from CD14+ CCR2+ monocytes, a cell population believed to have minimal capacity for proliferation. However, we demonstrate in vitro that certain myelopoietic cytokines commonly available within the TME induce robust proliferation of human monocytes, especially the combination of interleukin 3 (IL-3) and Macrophage Colony-Stimulating Factor 1 (M-CSF). Monocytic cells cultured with these cytokines efficiently modulate T cell proliferation, and their molecular phenotype recapitulates that of CD163+ TAMs. IL-3-driven proliferation of monocytic cells can be completely blocked by IL-4, associated with the induction of CDKN1A, alongside the upregulation of transcription factors linked to dendritic cell function, such as BATF3 and IRF4. Taken together, our work suggests several novel therapeutic routes to reducing immunosuppressive TAMs in human tumours, from blocking chemokine-mediated recruitment of monocytes to blocking their proliferation.
Assuntos
Proliferação de Células , Monócitos , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Antígenos CD/metabolismo , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologiaRESUMO
BACKGROUND: Now, targeted therapy and immunotherapy are promoted. tumour -Associated Macrophages (TAMs) are an essential component of immune-response in breast cancer(BC) with prognostic controversy. Additionally, their recruiting factors are still obscure. Purpose:This study aimed to evaluate the prognostic significance of CD163 and CD47 in BC of No Special Type (BC-NST) and to explore their suggested role in recruiting TAMs. MATERIAL AND METHODS: This immunohistochemical study was conducted on 91 archival specimens of breast cases. Immunoreactivity scores were correlated with TAMs density, clinicopathological data, and survival. RESULTS: Revealed the highest CD163 expression was detected in the pure DCIS group (p = 0.016), while the highest CD47 expression and high TAMs density were reported in the invasive group (p = 0.008, and p = 0.002 respectively) followed by the DCIS group. In IC-NSTs the CD163 and CD47 scores were associated with poor prognostic parameters like(high grade, advanced stage, distant metastasis, ER negativity,Ki67 index, post-surgical chemotherapy, poor NPI group, high mitotic count, dense infiltration of TAMs, shorter OS). Also, CD47 was associated with the dens infiltration of TAMs in DCIS (p = 0.001). There was a significant correlation between tumour cell expression of CD163 and CD47 in IC-NSTs and DCIS (p = 0.002 and p = 0.009 respectively). CONCLUSIONS: High CD163 and CD47 expressions in both DCIS andIBC are intimately associated, significantly associated with poor prognosis and are important provoking factors of TAMs.
Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Neoplasias da Mama , Antígeno CD47 , Imuno-Histoquímica , Receptores de Superfície Celular , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/análise , Antígenos de Diferenciação Mielomonocítica/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Antígenos CD/metabolismo , Feminino , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Microambiente Tumoral/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/análise , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Pessoa de Meia-Idade , Prognóstico , Adulto , IdosoRESUMO
Glioma is the most prevalent malignant brain tumour. Currently, reshaping its tumour microenvironment has emerged as an appealing strategy to enhance therapeutic efficacy. As the largest group of transmembrane transport proteins, solute carrier proteins (SLCs) are responsible for the transmembrane transport of various metabolites and ions. They play a crucial role in regulating the metabolism and functions of malignant cells and immune cells within the tumour microenvironment, making them a promising target in cancer therapy. Through multidimensional data analysis and experimental validation, we investigated the genetic landscape of SLCs in glioma. We established a classification system comprising 7-SLCs to predict the prognosis of glioma patients and their potential responses to immunotherapy and chemotherapy. Our findings unveiled specific SLC expression patterns and their correlation with the immune-suppressive microenvironment and metabolic status. The 7-SLC classification system was validated in distinguishing subgroups within the microenvironment, specifically identifying subsets involving malignant cells and tumour-associated macrophages. Furthermore, the orphan protein SLC43A3, a core member of the 7-SLC classification system, was identified as a key facilitator of tumour cell proliferation and migration, suggesting its potential as a novel target for cancer therapy.
Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , Proteínas Carreadoras de Solutos , Microambiente Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteínas Carreadoras de Solutos/genética , Proteínas Carreadoras de Solutos/metabolismo , Prognóstico , Proliferação de Células/genética , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , MultiômicaRESUMO
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Assuntos
Neoplasias , Morte Celular Regulada , Microambiente Tumoral , Macrófagos Associados a Tumor , Animais , Humanos , Apoptose , Autofagia , Ferroptose/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Morte Celular Regulada/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologiaRESUMO
Background: Oesophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths worldwide because existing treatments are often insufficient. Therefore, new, reliable biomarkers must be identified. CTSL overexpression is closely associated with tumour progression and poor prognosis. However, the role and mechanism of CTSL as an oncogene in ESCC remain unclear. Methods: Genome-wide association study (GWAS) data were used for Mendelian randomization analysis to investigate the possible relationships between CTSL and ESCC. The correlation between CTSL expression and prognosis was analysed using GEO, TCGA, and GEPIA data. We compared CTSL expression among the cell types using single-cell sequencing. Correlations between CTSL and the tumour microenvironment, immune cell infiltration, tumour mutational load, immunological checkpoints, and treatment sensitivity in patients with ESCC were investigated. Finally, using mouse models and cellular investigations, we assessed the effects of CTSL on the growth, apoptosis, and metastasis of ESCC tumour cells. Results: CTSL was overexpressed in ESCC and correlated with prognosis. We also discovered its close association with cell immunity, especially with tumour-associated macrophages and immune checkpoints in the tumour microenvironment. CTSL may play a key role in ESCC development by affecting M2 macrophage polarisation. CTSL and the M2 macrophage marker genes showed significant positive correlations. Mendelian randomization analysis confirmed a relationship between CTSL and ESCC. Finally, our in vitro and in vivo experiments demonstrated that CTSL promoted the proliferation and migration of ESCC cells, validating our bioinformatic analysis. Conclusion: CTSL emerged as a crucial gene in ESCC that influences patient prognosis and immunity, particularly in association with M2 macrophages. Therefore, targeting or modulating CTSL levels may provide new therapeutic strategies for patients with ESCC.
RESUMO
Clear cell renal cell carcinoma (ccRCC) represents a significant challenge in oncology, primarily due to its resistance to conventional therapies. Understanding the tumour microenvironment (TME) is crucial for developing new treatment strategies. This study focuses on the role of amyloid precursor protein (APP) in tumour-associated macrophages (TAMs) within the ccRCC TME, exploring its potential as a prognostic biomarker. Basing TAM-related genes, the prognostic model was important to constructed. Employing advanced single-cell transcriptomic analysis, this research dissects the TME of ccRCC at an unprecedented cellular resolution. By isolating and examining the gene expression profiles of individual cells, particularly focusing on TAMs, the study investigates the expression levels of APP and their association with the clinical outcomes of ccRCC patients. The analysis reveals a significant correlation between the expression of APP in TAMs and patient prognosis in ccRCC. Patients with higher APP expression in TAMs showed differing clinical outcomes compared to those with lower expression. This finding suggests that APP could serve as a novel prognostic biomarker for ccRCC, providing insights into the disease progression and potential therapeutic targets. This study underscores the importance of single-cell transcriptomics in understanding the complex dynamics of the TME in ccRCC. The correlation between APP expression in TAMs and patient prognosis highlights APP as a potential prognostic biomarker. However, further research is needed to validate these findings and explore the regulatory mechanisms and therapeutic implications of APP in ccRCC.
Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Precursor de Proteína beta-Amiloide , Biomarcadores , Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica , Neoplasias Renais/genética , Microambiente Tumoral/genéticaRESUMO
BACKGROUND AND AIMS: In gastric cancer, the response rate of programmed cell death protein-1 (PD-1) inhibitor is far from satisfactory, indicating additional nonredundant pathways might hamper antitumour immunity. V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been reported in several malignancies as a novel immune-checkpoint. Nevertheless, the role of VISTA in gastric cancer still remains obscure. Our purpose is to explore the clinical significance and potential mechanism of VISTA in affecting gastric cancer patients' survival and immunotherapeutic responsiveness. METHODS: Our study recruited eight independent cohorts with a total of 1403 gastric cancer patients. Immunohistochemistry, multiplex immunofluorescence, flow cytometry or intracellular flow cytometry, quantitative polymerase chain reaction, western blotting, fluorescence-activated cell sorting, magnetic-activated cell sorting, smart-seq2, in vitro cell co-culture and ex vivo tumour inhibition assays were applied to investigate the clinical significance and potential mechanism of VISTA in gastric cancer. RESULTS: VISTA was predominantly expressed on tumour-associated macrophages (TAMs), and indicated poor clinical outcomes and inferior immunotherapeutic responsiveness. VISTA+ TAMs showed a mixed phenotype. Co-culture of TAMs and CD8+ T cells indicated that VISTA+ TAMs attenuated effective function of CD8+ T cells. Blockade of VISTA reprogrammed TAMs to a proinflammatory phenotype, reactivated CD8+ T cells and promoted apoptosis of tumour cells. Moreover, blockade of VISTA could also enhance the efficacy of PD-1 inhibitor, suggesting that blockade of VISTA might synergise with PD-1 inhibitor in gastric cancer. CONCLUSIONS: Our data revealed that VISTA was an immune-checkpoint associated with immunotherapeutic resistance. Blockade of VISTA reprogrammed TAMs, promoted T-cell-mediated antitumour immunity, and enhanced efficacy of PD-1 inhibitor, which might have implications in the treatment of gastric cancer.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico , Macrófagos Associados a Tumor/metabolismo , ImunoglobulinasRESUMO
BACKGROUND: Metastasis accounts for the majority of deaths among patients with colorectal cancer (CRC). Here, the regulatory role of tumour-associated macrophages (TAMs) in CRC metastasis was explored. METHODS: Immunohistochemical (IHC) analysis of the TAM biomarker CD163 was conducted to evaluate TAM infiltration in CRC. Transwell assays and an ectopic liver metastasis model were established to evaluate the metastatic ability of tumour cells. RNA sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS) were applied to identify the differentially expressed genes and proteins in CRC cells and in TAM-derived extracellular vesicles (EVs). Cholesterol content measurement, a membrane fluidity assay and filipin staining were performed to evaluate cholesterol efflux in CRC cells. RESULTS: Our results showed that TAM infiltration is positively correlated with CRC metastasis. TAMs can facilitate the migration and invasion of MC-38 and CT-26 cells via EVs. According to the RNA-seq data, TAM-EVs increase cholesterol efflux and enhance membrane fluidity in CRC cells by regulating ABCA1 expression, thus affecting the motility of CRC cells. Mechanistically, DOCK7 packaged in TAM-EVs can activate RAC1 in CRC cells and subsequently upregulate ABCA1 expression by phosphorylating AKT and FOXO1. Moreover, IHC analysis of ABCA1 in patients with liver-metastatic CRC indicated that ABCA1 expression is significantly greater in metastatic liver nodules than in primary CRC tumours. CONCLUSIONS: Overall, our findings suggest that DOCK7 delivered via TAM-EVs could regulate cholesterol metabolism in CRC cells and CRC cell metastasis through the RAC1/AKT/FOXO1/ABCA1 axis. DOCK7 could thus be a new therapeutic target for controlling CRC metastasis.
Assuntos
Neoplasias do Colo , Vesículas Extracelulares , Humanos , Proteínas Proto-Oncogênicas c-akt , Macrófagos Associados a Tumor , Colesterol , Proteínas rac1 de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de GTPase , Transportador 1 de Cassete de Ligação de ATPRESUMO
Tumour-associated macrophages (TAMs) express a continuum of phenotypes ranging from an anti-tumoural M1-like phenotype to a pro-tumoural M2-like phenotype. During cancer progression, TAMs may shift to a more M2-like polarisation state, but the role of TAMs in CRC metastases is unclear. We conducted a comprehensive spatial and prognostic analysis of TAMs in CRC pulmonary metastases and corresponding primary tumours using multiplexed immunohistochemistry and machine learning-based image analysis. We obtained data from 106 resected pulmonary metastases and 74 corresponding primary tumours. TAMs in the resected pulmonary metastases were located closer to the cancer cells and presented a more M2-like polarised state in comparison to the primary tumours. Higher stromal M2-like macrophage densities in the invasive margin of pulmonary metastases were associated with worse 5-year overall survival (HR 3.19, 95% CI 1.35-7.55, p = 0.008). The results of this study highlight the value of multiplexed analysis of macrophage polarisation in cancer metastases and might have clinical implications in future cancer therapy.
Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Neoplasias Colorretais/genética , Ativação de Macrófagos , Macrófagos , Repetições de MicrossatélitesRESUMO
AIMS: The neutrophil-lymphocyte ratio (NLR) is a systemic reflection of cancer-associated inflammation and a prognostic marker for breast cancer. For the local tumour microenvironment, tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs) are also highly correlated with breast cancer survival. This study aimed to explore the relationship between the circulating and local immune microenvironment, and to further delineate the prognostic role of NLR in breast cancer patients receiving neoadjuvant chemotherapy (NAC). METHODS: A cohort of breast cancer patients receiving NAC with subsequent surgery was retrieved. Clinical data were reviewed. Histological slides and CD8 immunohistochemistry from biopsy (pre-chemotherapy) and excision (postchemotherapy) specimens were assessed for TILs and TAMs. RESULTS: A total of 146 patients were included. There was a significant positive correlation between pre- and postsurgery NLR at a cut-off of 2.6 (median pre-chemotherapy NLR) (P < 0.001). NLR pre-chemotherapy was associated positively with necrosis on biopsy (P = 0.027) and excision (P = 0.021) and TAMs on excision (P = 0.049). NLR 1 year postsurgery was associated with high tumour stage (P = 0.050) and low histological grade (P = 0.008). TIL count was lower in NLR-high cases at almost all time-points by histological assessment and CD8 immunostaining (P < 0.050). In multivariate analysis, postsurgery NLR is an independent predictor for overall survival [OS; hazard ratio (HR) = 9.524, P < 0.001], breast cancer-specific survival (BCSS) (HR = 10.059, P = 0.001) and disease-free survival (DFS; HR = 2.824, P = 0.016). CONCLUSIONS: The association between NLR with tumour necrosis, TAMs and TILs illustrates an interaction between the circulating and local immune microenvironment. Late NLR is a strong indicator of outcome and may be useful for prognostication and disease monitoring.