Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(28): e2309259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760900

RESUMO

Food traceability and authentication systems play an important role in ensuring food quality and safety. Current techniques mainly rely on direct measurement by instrumental analysis, which is usually designed for one or a group of specific foods, not available for various food categories. To develop a general strategy for food identification and discrimination, a novel method based on fluorescence sensor arrays is proposed, composed of supramolecular assemblies regulated by non-covalent interactions as an information conversion system. The stimuli-responsiveness and tunability of supramolecular assemblies provided an excellent platform for interacting with various molecules in different foods. In this work, five sensor arrays constructed by supramolecular assemblies composed of pyrene derivatives and perylene derivatives are designed and prepared. Assembly behavior and sensing mechanisms are investigated systematically by spectroscopy techniques. The traceability and authentication effects on several kinds of food from different origins or grades are evaluated and verified by linear discriminant analysis (LDA). It is confirmed that the cross-reactive signals from different sensor units encompassing all molecular interactions can generate a unique fingerprint pattern for each food and can be used for traceability and authentication toward universal food categories with 100% accuracy.


Assuntos
Análise de Alimentos , Análise de Alimentos/métodos , Espectrometria de Fluorescência/métodos , Análise Discriminante , Fluorescência
2.
ACS Appl Mater Interfaces ; 12(41): 45728-45743, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32960036

RESUMO

Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.


Assuntos
Polímeros/química , DNA/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Microscopia Confocal , Nanopartículas/química , Células PC-3 , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA