Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Aging Cell ; : e14277, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137949

RESUMO

Neuronal cells are highly specialized cells and have a specific metabolic profile to support their function. It has been demonstrated that the metabolic profiles of different cells/tissues undergo significant reprogramming with advancing age, which has often been considered a contributing factor towards aging-related diseases including Alzheimer's (AD) and Parkinson's (PD) diseases. However, it is unclear if the metabolic changes associated with normal aging predispose neurons to disease conditions or a distinct set of metabolic alterations happen in neurons in AD or PD which might contribute to disease pathologies. To decipher the changes in neuronal metabolism with age, in AD, or in PD, we performed high-throughput steady-state metabolite profiling on heads in wildtype Drosophila and in Drosophila models relevant to AD and PD. Intriguingly, we found that the spectrum of affected metabolic pathways is dramatically different between normal aging, Tau, or Synuclein overexpressing neurons. Genetic targeting of the purine and glutamate metabolism pathways, which were dysregulated in both old age and disease conditions partially rescued the neurodegenerative phenotype associated with the overexpression of wildtype and mutant tau. Our findings support a "two-hit model" to explain the pathological manifestations associated with AD where both aging- and Tau/Synuclein- driven metabolic reprogramming events cooperate with each other, and targeting both could be a potent therapeutic strategy.

2.
Neurotoxicology ; 104: 95-115, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038526

RESUMO

Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 µg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 µg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.

3.
J Neuroimmunol ; 394: 578403, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39047317

RESUMO

This study investigated the impact of two-hit inflammation on postoperative cognitive dysfunction (POCD) in mice and the role of macrophage-derived exosomes in regulating this process. Mice models were used to mimic the state of two-hit inflammation, and cognitive function was assessed through behavioral experiments. Proinflammatory cytokine expression levels and blood-brain barrier (BBB)-associated functional proteins were measured using ELISA and Western blot, respectively. An in vitro macrophage inflammation two-hit model was created, and the role of exosomes was examined using the previously mentioned assays. Additionally, exosomes were injected into mice to further understand their impact in the two-hit inflammation model. Mice exposed to two-hit inflammation experienced impaired cognitive function, increased BBB permeability, and elevated levels of proinflammatory cytokines. Macrophages subjected to two-hit inflammation released higher levels of proinflammatory cytokines compared to the control group and other treatment groups. Treatment with an exosome inhibitor GW4869 effectively reduced the expression levels of proinflammatory cytokines in macrophages exposed to two-hit inflammation. Moreover, injection of macrophage-released exosomes into healthy mice induced inflammation, hippocampal damage, and cognitive disorders, which were mitigated by treatment with GW4869. In mice with two-hit inflammation, macrophage-released exosomes worsened cognitive disorders by promoting inflammation in the peripheral blood and central nervous system. However, treatment with GW4869 protected cognitive function by suppressing exosome release. These findings highlight the importance of two-hit inflammation in POCD and emphasize the critical role of exosomes as regulatory factors. This research provides valuable insights into the pathogenesis of POCD and potential intervention strategies.

4.
Front Endocrinol (Lausanne) ; 15: 1351624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868744

RESUMO

Introduction: Well-differentiated pancreatic neuroendocrine tumors (PNETs) can be non-functional or functional, e.g. insulinoma and glucagonoma. The majority of PNETs are sporadic, but PNETs also occur in hereditary syndromes, primarily multiple endocrine neoplasia type 1 (MEN1). The Knudson hypothesis stated a second, somatic hit in MEN1 as the cause of PNETs of MEN1 syndrome. In the recent years, reports on genetic somatic events in both sporadic and hereditary PNETs have emerged, providing a basis for a more detailed molecular understanding of the pathophysiology. In this systematic review and meta-analysis, we made a collation and statistical analysis of aggregated frequent genetic alterations and potential driver events in human grade G1/G2 PNETs. Methods: A systematic search was performed in concordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) reporting guidelines of 2020. A search in Pubmed for published studies using whole exome, whole genome, or targeted gene panel (+400 genes) sequencing of human G1/G2 PNETs was conducted at the 25th of September 2023. Fourteen datasets from published studies were included with data on 221 patients and 225 G1/G2 PNETs, which were divided into sporadic tumors, and hereditary tumors with pre-disposing germline variants, and tumors with unknown germline status. Further, non-functioning and functioning PNETs were distinguished into two groups for pathway evaluation. The collated genetical analyses were conducted using the 'maftools' R-package. Results: Sporadic PNETs accounted 72.0% (162/225), hereditary PNETs 13.3% (30/225), unknown germline status 14.7% (33/225). The most frequently altered gene was MEN1, with somatic variants and copy number variations in overall 42% (95/225); hereditary PNETs (germline variations in MEN1, VHL, CHEK2, BRCA2, PTEN, CDKN1B, and/or MUTYH) 57% (16/30); sporadic PNETs 36% (58/162); unknown germline status 64% (21/33). The MEN1 point mutations/indels were distributed throughout MEN1. Overall, DAXX (16%, 37/225) and ATRX-variants (12%, 27/225) were also abundant with missense mutations clustered in mutational hotspots associated with histone binding, and translocase activity, respectively. DAXX mutations occurred more frequently in PNETs with MEN1 mutations, p<0.05. While functioning PNETs shared few variated genes, non-functioning PNETs had more recurrent variations in genes associated with the Phosphoinositide 3-kinase, Wnt, NOTCH, and Receptor Tyrosine Kinase-Ras signaling onco-pathways. Discussion: The somatic genetic alterations in G1/G2 PNETs are diverse, but with distinct differences between sporadic vs. hereditary, and functional vs. non-functional PNETs. Increased understanding of the genetic alterations may lead to identification of more drivers and driver hotspots in the tumorigenesis in well-differentiated PNETs, potentially giving a basis for the identification of new drug targets. (Funded by Novo Nordisk Foundation, grant number NNF19OC0057915).


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Análise de Sequência de DNA/métodos , Mutação
5.
Neuroscience ; 551: 205-216, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38843988

RESUMO

Here, we explored the impact of prolonged environmental enrichment (EE) on behavioral, neurochemical, and epigenetic changes in the serotonin transporter gene in mice subjected to a two-hit schizophrenia model. The methodology involved administering the viral mimetic PolyI:C to neonatal Swiss mice as a first hit during postnatal days (PND) 5-7, or a sterile saline solution as a control. At PND21, mice were randomly assigned either to standard environment (SE) or EE housing conditions. Between PND35-44, the PolyI:C-treated group was submitted to various unpredictable stressors, constituting the second hit. Behavioral assessments were conducted on PND70, immediately after the final EE exposure. Following the completion of behavioral assessments, we evaluated the expression of proteins in the hippocampus that are indicative of microglial activation, such as Iba-1, as well as related to neurogenesis, including doublecortin (Dcx). We also performed methylation analysis on the serotonin transporter gene (Slc6a4) to investigate alterations in serotonin signaling. The findings revealed that EE for 50 days mitigated sensorimotor gating deficits and working memory impairments in two-hit mice and enhanced their locomotor and exploratory behaviors. EE also normalized the overexpression of hippocampal Iba-1 and increased the expression of hippocampal Dcx. Additionally, we observed hippocampal demethylation of the Slc6a4 gene in the EE-exposed two-hit group, indicating epigenetic reprogramming. These results contribute to the growing body of evidence supporting the protective effects of long-term EE in counteracting behavioral disruptions caused by the two-hit schizophrenia model, pointing to enhanced neurogenesis, diminished microglial activation, and epigenetic modifications of serotonergic pathways as underlying mechanisms.


Assuntos
Modelos Animais de Doenças , Meio Ambiente , Hipocampo , Esquizofrenia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Hipocampo/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/genética , Camundongos , Masculino , Proteína Duplacortina , Regiões Promotoras Genéticas , Metilação de DNA , Poli I-C , Neurogênese/fisiologia , Filtro Sensorial/fisiologia
6.
Heliyon ; 10(9): e30617, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774072

RESUMO

Autism spectrum disorder (ASD) is a group of developmental diseases characterized by social dysfunction and repetitive stereotype behaviors. Besides genetic mutations, environmental factors play important roles in the development of ASD. Valproic acid (VPA) is widely used for modeling environmental factor induced ASD in rodents. However, traditional VPA modeling is low-in-efficiency and the phenotypes often vary among different batches of experiments. To optimize this ASD-modeling method, we tested "two-hit" hypothesis by single or double exposure of VPA and poly:IC at the critical time points of embryonic and postnatal stage. The autistic-like behaviors of mice treated with two-hit schemes (embryonic VPA plus postnatal poly:IC, embryonic poly:IC plus postnatal VPA, embryonic VPA plus poly: IC, or postnatal VPA plus poly:IC) were compared with mice treated with traditional VPA protocol. The results showed that all single-hit and two-hit schemes produced core ASD phenotypes as VPA single treatment did. Only one group, namely, mice double-hit by VPA and poly:IC simultaneously at E12.5 showed severe impairment of social preference, social interaction and ultrasonic communication, as well as significant increase of grooming activity and anxiety-like behaviors, in comparation with mice treated with the traditional VPA protocol. These data demonstrated that embryonic two-hit of VPA and poly:IC is more efficient in producing ASD phenotypes in mice than the single-hit of VPA, indicating this two-hit scheme could be utilized for modeling environmental factors induced ASD.

7.
Behav Brain Res ; 468: 115028, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723677

RESUMO

Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.


Assuntos
Proteínas Reguladoras de Apoptose , Depressão , Hipocampo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Proteínas de Ligação a RNA , Estresse Psicológico , Animais , Masculino , Camundongos , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas de Ligação a RNA/metabolismo , Estresse Psicológico/metabolismo , Feminino
8.
Front Neurol ; 15: 1284574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685949

RESUMO

Introduction: Patients with Neurofibromatosis type 1 (NF1), the most common neurocutaneous disorder, can develop several neurological manifestations that include cognitive impairments and epilepsy over their lifetime. It is unclear why certain patients with NF1 develop these conditions while others do not. Early-life immune activation promotes later-life seizure susceptibility, neurocognitive impairments, and leads to spontaneous seizures in some animal models of neurodevelopmental disorders, but the central nervous system immune profile and the enduring consequences of early-life immune activation on the developmental trajectory of the brain in NF1 have not yet been explored. We tested the hypothesis that early-life immune activation promotes the development of spatial memory impairments and epileptogenesis in a mouse model of NF1. Methods: Male wild-type (WT) and Nf1+/- mice received systemic lipopolysaccharide (LPS) or saline at post-natal day 10 and were assessed in adulthood for learning and memory deficits in the Barnes maze and underwent EEG recordings to look for spontaneous epileptiform abnormalities and susceptibility to challenge with pentylenetetrazole (PTZ). Results: Whereas early-life immune activation by a single injection of LPS acutely elicited a comparable brain cytokine signature in WT and Nf1+/- mice, it promoted spontaneous seizure activity in adulthood only in the Nf1+/- mice. Early-life immune activation affected susceptibility to PTZ-induced seizures similarly in both WT and Nf1+/-mice. There was no effect on spatial learning and memory regardless of mouse genotype. Discussion: Our findings suggest second-hit environmental events such as early-life immune activation may promote epileptogenesis in the Nf1+/- mouse and may be a risk-factor for NF1-associated epilepsy.

9.
Braz. j. med. biol. res ; 51(10): e7579, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951716

RESUMO

Glucocorticoid insensitivity is an important barrier to the treatment of several inflammatory diseases, including acute lung injury (ALI). Saquinavir (SQV) is an inhibitor of the human immunodeficiency virus protease, and the therapeutic effects of SQV in ALI accompanied with glucocorticoid insensitivity have not been previously investigated. In this study, the effects of SQV on lipopolysaccharide (LPS)-mediated injury in human pulmonary microvascular endothelial cells (HPMECs), human type I alveolar epithelial cells (AT I), and alveolar macrophages were determined. In addition, the effects of SQV on an LPS-induced ALI model with or without methylprednisolone (MPS) were studied. In LPS-stimulated HPMECs, SQV treatment resulted in a decrease of high mobility group box 1 (HMGB1), phospho-NF-κB (p-NF-κB), and toll-like receptor 4 (TLR4), and an increase of VE-cadherin. Compared to MPS alone, MPS plus SQV attenuated the decrease of glucocorticoid receptor alpha (GRα) and IκBα in LPS-stimulated HPMECs. HMGB1, TLR4, and p-NF-κB expression were also lessened in LPS-stimulated alveolar macrophages with SQV treatment. In addition, SQV reduced the injury in human AT I with a decrease of HMGB1 and p-NF-κB, and with an increase of aquaporin 5 (AQP 5). SQV ameliorated the lung injury caused by LPS in rats with reductions in vascular permeability, myeloperoxidase activity (MPO) and histopathological scores, and with lowered HMGB1, TLR4, and p-NF-κB expression, but with enhanced VE-cadherin expression. By comparison, SQV plus MPS increased GRα and IκBα in lung tissues of rats with ALI. This study demonstrated that SQV prevented experimental ALI and improved glucocorticoid insensitivity by modulating the HMGB1/TLR4 pathway.


Assuntos
Animais , Masculino , Ratos , Metilprednisolona/administração & dosagem , Saquinavir/administração & dosagem , Lesão Pulmonar Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Lipopolissacarídeos , Ratos Sprague-Dawley , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Modelos Animais de Doenças , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
10.
Braz. j. med. biol. res ; 42(9): 804-811, Sept. 2009. ilus, graf
Artigo em Inglês | LILACS | ID: lil-524312

RESUMO

High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.


Assuntos
Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/metabolismo , Anticorpos/uso terapêutico , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Choque Hemorrágico/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Endotoxinas/administração & dosagem , Endotoxinas/farmacologia , Proteína HMGB1/imunologia , Mediadores da Inflamação/imunologia , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA