RESUMO
Rechargeable aqueous Zn-ion batteries have been deemed a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with -ClO4 groups (MOF-ClO4) as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ 'on' and anions 'off' states. The MOF-ClO4 achieved perfect Zn2+/SO4 2- selectivity (â¼10), enhanced Zn2+ transfer number ([Formula: see text]) and the ultrafluidic Zn2+ flux (1.9 × 10-3 vs. 1.67 mmol m-2 s-1 for KcsA). The symmetric cells based on MOF-ClO4 achieve a lifespan of over 5400 h at 10 mA cm-2/20 mAh cm-2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g-1. The regulated ion transport, by learning from a biological plasma membrane, opens a new avenue towards ultralong lifespan aqueous batteries.
RESUMO
Cytomegalovirus (CMV) retinitisis a vision-threatening disease that principally afflicts immunosuppressed patients. For the management of the disease, Ganciclovir (GCV) is usually administered systemically, where patients may suffer severe untoward effects. The ocularly-applied alternatives are either the intravitreal injections, which are frequently administered due to GCV short half-life, or the sustained-release implants, which require surgical removal upon drug depletion. Both therapies are invasive and should be completed by a medical expert. The objective of this research was to formulate a non-invasive alternative represented in GCV loaded ultra-fluidic glycerosomes (UFGs), which are glycerosomes containing sodium taurocholate as an edge activator (EA), then incorporating the optimal UFGs in polylactic acid (PLA)-based 3D printed ocusert to prolong the release of GCV. The experimental design, the statistical analysis, and the optimization were performed via Design-Expert® software. The optimal formulation (UFGs 6; composed of 600 mg Phosphatidylcholine (PC), 20 mg cholesterol, 0.1:1 weight molar ratio of EA: PC and 1 gm glycerol) possessed nanovesicles (441.70 ± 1.13 nm) that entrapped 69.33 ± 0.28 % of GCV, with zeta potential value of -37.00 ± 0.42 mV and deformability index value of 74.68 ± 0.71. The confocal microscopy results showed the supreme penetration power of UFGs through the rabbit's cornea, compared to edge-activated vesicles and conventional glycerosomes from the laden ocusert. Moreover, the topical application of the ocusert laden with the optimal GCV loaded UFGs to the rabbits' eyes evidenced their safety as per the histopathological findings. Furthermore, a pharmacokinetic study in the rabbit's aqueous humor demonstrated the sustained release of GCV from the ocusert laden with the optimal GCV loaded UFGs over 5 days. Inclusively, the ocusert laden with UFGs could be considered as a non-invasive sustaining drug delivery system of GCV for the management of CMV retinitis.