Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Adv Sci (Weinh) ; : e2405544, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258595

RESUMO

Numerous plants evolve ingeniously microcantilever-based hairs to ultra-sensitively detect out-of-plane quasi-static tactile loads, providing a natural blueprint for upgrading the industrial static mode microcantilever sensors, but how do the biological sensory hairs work mechanically? Here, the action potential-producing trigger hairs of carnivorous Venus flytraps (Dionaea muscipula) are investigated in detail from biomechanical perspective. Under tiny mechanical stimulation, the deformable trigger hair, composed of distal stiff lever and proximal flexible podium, will lead to rapid trap closure and prey capture. The multiple features determining the sensitivity such as conical morphology, multi-scale functional structures, kidney-shaped sensory cells, and combined deformation under tiny mechanical stimulation are comprehensively researched. Based on materials mechanics, finite element simulation, and bio-inspired original artificial sensors, it is verified that the omnidirectional ultra-sensitivity of trigger hair is attributed to the stiff-flexible coupling of material, the double stress concentration, the circular distribution of sensory cells, and the positive local buckling. Also, the balance strategy of slender hair between sensitivity and structural stability (i.e., avoiding disastrous collapse) is detailed revealed. The unique basic biomechanical mechanism underlying trigger hairs is essential for significantly enhancing the performance of the traditional industrial static mode microcantilever sensors, and ensure the stability of arbitrary load perception.

2.
ACS Synth Biol ; 13(9): 2718-2732, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39120961

RESUMO

Microorganisms are shown to actively partition their intracellular resources, such as proteins, for growth optimization. Recent experiments have begun to reveal molecular components unpinning the partition; however, quantitatively, it remains unclear how individual parts orchestrate to yield precise resource allocation that is both robust and dynamic. Here, we developed a coarse-grained mathematical framework that centers on guanosine pentaphosphate (ppGpp)-mediated regulation and used it to systematically uncover the design principles of proteome allocation in Escherichia coli. Our results showed that the cellular ability of resource partition lies in an ultrasensitive, negative feedback-controlling topology with the ultrasensitivity arising from zero-order amino acid kinetics and the negative feedback from ppGpp-controlled ribosome synthesis. In addition, together with the time-scale separation between slow ribosome kinetics and fast turnovers of ppGpp and amino acids, the network topology confers the organism an optimization mechanism that mimics sliding mode control, a nonlinear optimization strategy that is widely used in man-made systems. We further showed that such a controlling mechanism is robust against parameter variations and molecular fluctuations and is also efficient for biomass production over time. This work elucidates the fundamental controlling mechanism of E. coli proteome allocation, thereby providing insights into quantitative microbial physiology as well as the design of synthetic gene networks.


Assuntos
Escherichia coli , Proteoma , Ribossomos , Escherichia coli/metabolismo , Escherichia coli/genética , Proteoma/metabolismo , Proteoma/genética , Ribossomos/metabolismo , Ribossomos/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Guanosina Pentafosfato/metabolismo , Aminoácidos/metabolismo , Cinética , Modelos Biológicos
3.
Bioinspir Biomim ; 19(5)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39094623

RESUMO

Nature abounds with examples of ultra-sensitive perception and agile body transformation for highly efficient predation as well as extraordinary adaptation to complex environments. Flytraps, as a representative example, could effectively detect the most minute physical stimulation of insects and respond instantly, inspiring numerous robotic designs and applications. However, current robotic flytraps face challenges in reproducing the ultra-sensitive insect-touch perception. In addition, fast and fully-covered capture of live insects with robotic flytraps remains elusive. Here we report a novel design of a robotic flytrap with an ultra-sensitive 'trichome' and bistable fast-response 'lobes'. Our results show that the 'trichome' of the proposed robotic flytrap could detect and respond to both the external stimulation of 0.45 mN and a tiny touch of a flying bee with a weight of 0.12 g. Besides, once the 'trichome' is triggered, the bistable 'lobes' could instantly close themselves in 0.2 s to form a fully-covered cage to trap the bees, and reopen to set them free after the tests. We introduce the design, modeling, optimization, and verification of the robotic flytrap, and envision broader applications of this technology in ultra-sensitive perception, fast-response grasping, and biomedical engineering studies.


Assuntos
Voo Animal , Robótica , Robótica/instrumentação , Robótica/métodos , Animais , Voo Animal/fisiologia , Tato/fisiologia , Desenho de Equipamento , Abelhas/fisiologia , Biomimética/métodos
4.
BMC Vet Res ; 20(1): 258, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877537

RESUMO

BACKGROUND: Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread. METHODS: In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system. RESULTS: The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/µL of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours. CONCLUSIONS: Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.


Assuntos
Sistemas CRISPR-Cas , Picornaviridae , Sensibilidade e Especificidade , Doenças dos Suínos , Animais , Suínos , Picornaviridae/isolamento & purificação , Picornaviridae/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Proteínas Associadas a CRISPR/genética
5.
Talanta ; 276: 126267, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762976

RESUMO

DNA Methyltransferase 1 (DNMT1) serves as a crucial biomarker associated with various diseases and is essential for evaluating DNA methylation levels, diagnosing diseases, and evaluating prognosis. As a result, a convenient, quantitative, and sensitive assay for detecting DNMT1 is in high demand. However, current techniques for DNMT1 detection struggle to balance accuracy, low cost, and high sensitivity, limiting their clinical usefulness. To address this challenge, we have developed a DNMT1 detection method (CAED), which combines aptamer-specific recognition with a highly programmable Entropy-driven catalysis DNA network and is further integrated with the CRISPR-Cas12a system. This innovative approach achieves a detection limit as low as 90.9 fmol/L. To demonstrate the clinical applicability and significance of our CAED method, we successfully measured DNMT1 levels in 10 plasma samples 10 cervical tissue samples. These results underscore the potential of our method as an accurate, affordable, and ultra-sensitive tool for evaluating DNMT1 levels. This innovative method offers a potent means for assessing DNMT1 levels and significantly advances disease diagnosis and health risk prediction. Plus, it establishes an innovative design framework for CRISPR-Cas12a-based biosensors, tailored explicitly for enzyme content quantification.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferase 1 , Entropia , Técnicas Biossensoriais/métodos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos , Sistemas CRISPR-Cas/genética , Aptâmeros de Nucleotídeos/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Limite de Detecção , Feminino
6.
Bull Math Biol ; 86(5): 59, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637362

RESUMO

The ultrasensitivity of a dose response function can be quantifiably defined using the generalized Hill coefficient of the function. We examined an upper bound for the Hill coefficient of the composition of two functions, namely the product of their individual Hill coefficients. We proved that this upper bound holds for compositions of Hill functions, and that there are instances of counterexamples that exist for more general sigmoidal functions. Additionally, we tested computationally other types of sigmoidal functions, such as the logistic and inverse trigonometric functions, and we provided computational evidence that in these cases the inequality also holds. We show that in large generality there is a limit to how ultrasensitive the composition of two functions can be, which has applications to understanding signaling cascades in biochemical reactions.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 300(5): 107220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522517

RESUMO

Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.


Assuntos
Relógios Circadianos , Retroalimentação Fisiológica , Animais , Humanos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Modelos Biológicos , Fosforilação , Modificação Traducional de Proteínas
8.
Interface Focus ; 14(1): 20230045, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38344405

RESUMO

Cellular signal transduction takes place through a network of phosphorylation cycles. These pathways take the form of a multi-layered cascade of cycles. This work focuses on the sensitivity of single, double and n length cycles. Cycles that operate in the zero-order regime can become sensitive to changes in signal, resulting in zero-order ultrasensitivity (ZOU). Using frequency analysis, we confirm previous efforts that cascades can act as noise filters by computing the bandwidth. We show that n length cycles display what we term first-order ultrasensitivity which occurs even when the cycles are not operating in the zero-order regime. The magnitude of the sensitivity, however, has an upper bound equal to the number of cycles. It is known that ZOU can be significantly reduced in the presence of retroactivity. We show that the first-order ultrasensitivity is immune to retroactivity and that the ZOU and first-order ultrasensitivity can be blended to create systems with constant sensitivity over a wider range of signal. We show that the ZOU in a double cycle is only modestly higher compared with a single cycle. We therefore speculate that the double cycle has evolved to enable amplification even in the face of retroactivity.

9.
Cell Rep Med ; 5(3): 101432, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38387464

RESUMO

Dimeric prodrug nanoassemblies (DPNAs) stand out as promising strategies for improving the efficiency and safety of chemotherapeutic drugs. The success of trisulfide bonds (-SSS-) in DPNAs makes polysulfide bonds a worthwhile focus. Here, we explore the comprehensive role of tetrasulfide bonds (-SSSS-) in constructing superior DPNAs. Compared to trisulfide and disulfide bonds, tetrasulfide bonds endow DPNAs with superlative self-assembly stability, prolonged blood circulation, and high tumor accumulation. Notably, the ultra-high reduction responsivity of tetrasulfide bonds make DPNAs a highly selective "tumor bomb" that can be ignited by endogenous reducing agents in tumor cells. Furthermore, we present an "add fuel to the flames" strategy to intensify the reductive stress at tumor sites by replenishing exogenous reducing agents, making considerable progress in selective tumor inhibition. This work elucidates the crucial role of tetrasulfide bonds in establishing intelligent DPNAs, alongside the combination methodology, propelling DPNAs to new heights in potent cancer therapy.


Assuntos
Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Substâncias Redutoras , Linhagem Celular Tumoral
10.
Biosens Bioelectron ; 251: 116122, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382271

RESUMO

Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Monitoramento Ambiental
11.
Angew Chem Int Ed Engl ; 63(11): e202319246, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38191762

RESUMO

IR spectroelectrochemistry (EC-IR) is a cutting-edge operando method for exploring electrochemical reaction mechanisms. However, detection of interfacial molecules is challenged by the limited sensitivity of existing EC-IR platforms due to the lack of high-enhancement substrates. Here, we propose an innovative plasmon-enhanced infrared spectroelectrochemistry (EC-PEIRS) platform to overcome this sensitivity limitation. Plasmonic antennae with ultrahigh IR signal enhancement are electrically connected via monolayer graphene while preserving optical path integrity, serving as both the electrode and IR substrate. The [Fe(CN)6 ]3- /[Fe(CN)6 ]4- redox reaction and electrochemical CO2 reduction reaction (CO2 RR) are investigated on the EC-PEIRS platform with a remarkable signal enhancement. Notably, the enhanced IR signals enable a reconstruction of the electrochemical curve of the redox reactions and unveil the CO2 RR mechanism. This study presents a promising technique for boosting the in-depth understanding of interfacial events across diverse applications.

12.
Talanta ; 269: 125503, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070283

RESUMO

The catecholamines, mainly dopamine (DA), are present in the cellular cytosol with low abundance, while, play key roles in various neurodegenerative disorders. Here, platinized nanocavity carbon electrodes are employed to analyze cytosolic catecholamines in a single living PC12 cell, which is not easily quantified using the classic electrodes. The confined structure and excellent conductivity in the platinized nanocavity accelerate the electron transfer of the DA, resulting in a low detection limit down to 50 nM. The sensitivity of DA detection is improved to be 10.73 pA mM-1 nm-1 in the response range of 50 nM-100 µM, which guarantees quantitative analysis of cytosolic catecholamines with low abundance. Eventually, the platinized nanocavity electrode is employed to detect cytosolic catecholamines in a single PC12 cell without an obvious interruption of cellular catecholamine level. The cytosolic catecholamines in a single PC12 cell is measured in situ to be 0.1 µM, which is achieved for the first time at the single cell level using the electrochemical method. The results demonstrate that the nanocavity electrode with a high sensitivity could offer a promising means to dynamically track catecholamines in a single cell.


Assuntos
Catecolaminas , Dopamina , Catecolaminas/análise , Citosol/química , Dopamina/análise , Eletrodos , Carbono , Técnicas Eletroquímicas
13.
Bioorg Med Chem Lett ; 97: 129563, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008336

RESUMO

Biothiols play a crucial role in maintaining redox balance in organisms, and anomalous levels of biothiols in human organs can lead to various sicknesses and biological disorders. This work developed a novel sensitive fluorescent probe TZ-NBD with double channels for highly efficient recognition of biothiols. TZ-NBD adopts 4-Chloro-7-nitrobenzofurazan (NBD-Cl) as the recognition moiety with simultaneous fluorescence output. By incorporating NBD-Cl with the other fluorophore, benzothiazole dihydrocyclopentachromene derivative (TZ-OH), the dual-channel sensitive fluorescence probe TZ-NBD was built. The existence of Cys/ Hcy could significantly trigger both the green and red fluorescent emissions, which were derived from fluorophores amine-substituted NBD and TZ-OH, respectively. While exposing to GSH, only the red-channel fluorescence signal could be detected, indicating the release of TZ-OH. The phenomena was mainly attributed to the fact that sulfur-substituted NBD has nearly no fluorescence, while amine-substituted NBD shows obvious green fluorescence. In our study, TZ-NBD exhibited dual-channel sensitivity, fast response, and excellent selectivity to biothiols in vitro. Moreover, TZ-NBD was favorably utilized for recognition of biothiols in vivo. We believe that the sensitive fluorescence probe with double channels can afford an alternate approach for monitoring biothiols in organisms and would be useful for studying diseases associated with biothiols.


Assuntos
Cisteína , Corantes Fluorescentes , Humanos , Glutationa , Espectrometria de Fluorescência , Aminas , Homocisteína
14.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37781602

RESUMO

Signal transduction from a cell's surface to cytoplasmic and nuclear targets takes place through a complex network of interconnected pathways. Phosphorylation cycles are common components of many pathways and may take the form of a multi-layered cascade of cycles or incorporate species with multiple phosphorylation sites that effectively create a sequence of cycles with increasing states of phosphorylation. This work focuses on the frequency response and sensitivity of such systems, two properties that have not been thoroughly examined. Starting with a singularly phosphorylated single-cycle system, we compare the sensitivity to perturbation at steady-state across a range of input signal strengths. This is followed by a frequency response analysis focusing on the gain and associated bandwidth. Next, we consider a two-layer cascade of single phosphorylation cycles and focus on how the two cycles interact to produce various effects on the bandwidth and damping properties. Then we consider the (ultra)sensitivity of a doubly phosphorylated system, where we describe in detail first-order ultrasensitivity, a unique property of these systems, which can be blended with zero-order ultrasensitivity to create systems with relatively constant gain over a range of signal input. Finally, we give an in-depth analysis of the sensitivity of an n-phosphorylated system.

15.
J Biomed Sci ; 30(1): 58, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525275

RESUMO

Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.


Assuntos
Doenças Genéticas Inatas , Mutação , Humanos , Fenótipo
16.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36979588

RESUMO

Fluorescence can be enhanced or quenched depending on the distance between the surface of a metal nanoparticle and the fluorophore molecule. Fluorescence enhancement by nearby metal particles is called metal-enhanced fluorescence (MEF). MEF shows promising potential in the field of fluorescence-based biological sensing. MEF-based biosensor systems generally fall into two platform categories: (1) a two/three-dimensional scaffold, or (2) a colloidal suspension. This review briefly summarizes the application studies using wavelength-dependent carbon dots (UV-VIS), noble metals (VIS), and upconversion nanoparticles (NIR to VIS), representative nanomaterials that contribute to the enhancement of fluorescence through the resonance energy transfer modulation and then presents a perspective on this topic.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Fluorescência , Metais , Técnicas Biossensoriais/métodos , Transferência de Energia , Espectrometria de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos
17.
Biosens Bioelectron ; 226: 115118, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36806764

RESUMO

As an essential biomarker associated with various diseases, Uracil-DNA Glycosylase (UDG) detection is vital for disease diagnosis, treatment selection, and prognosis assessment. In recent years, the signal amplification effect of the CRISPR-Cas12a trans-cleaved single-stranded DNA probe has provided an available strategy for constructing highly sensitive biosensors. However, its superior trans-cleavage activity has become a "double-edged sword" for building biosensors that can amplify the target signal while also amplifying the leakage signal, causing out of control. Therefore, the construction of structurally simple, extremely low-background, highly sensitive CRISPR-Cas12a-based biosensors is an urgent bottleneck problem in the field. Here, we applied CRISPR-Cas12a with a DNA hybridization reaction to develop a simple, rapid, low background, and highly sensitive method for UDG activity detection. It has no PAM restriction and the detection limit is as low as 2.5 × 10-6 U/mL. As far as we know, this method is one of the most sensitive methods for UDG detection. We also used this system to analyze UDG activity in tumor cells (LOD: 1 cell/uL) and to evaluate the ability to screen for UDG inhibitors. Furthermore, we verified the possibility of intracellular UDG activity imaging by transfecting the biosensors to the cells. We believe this novel sensor has good clinical application prospects and will effectively broaden the application space of CRISPR-Cas12a.


Assuntos
Técnicas Biossensoriais , Uracila-DNA Glicosidase , Sistemas CRISPR-Cas , Limite de Detecção , DNA de Cadeia Simples
18.
J R Soc Interface ; 20(198): 20220553, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596458

RESUMO

Robust perfect adaptation (RPA) is a ubiquitously observed signalling response across all scales of biological organization. A major class of network architectures that drive RPA in complex networks is the Opposer module-a feedback-regulated network into which specialized integral-computing 'opposer node(s)' are embedded. Although ultrasensitivity-generating chemical reactions have long been considered a possible mechanism for such adaptation-conferring opposer nodes, this hypothesis has relied on simplified Michaelian models, which neglect the presence of protein-protein complexes. Here we develop complex-complete models of interlinked covalent-modification cycles with embedded ultrasensitivity, explicitly capturing all molecular interactions and protein complexes. Strikingly, we demonstrate that the presence of protein-protein complexes thwarts the network's capacity for RPA in any 'free' active protein form, conferring RPA capacity instead on the concentration of a larger protein pool consisting of two distinct forms of a single protein. We further show that the presence of enzyme-substrate complexes, even at comparatively low concentrations, play a crucial and previously unrecognized role in controlling the RPA response-significantly reducing the range of network inputs for which RPA can obtain, and imposing greater parametric requirements on the RPA response. These surprising results raise fundamental new questions as to the biochemical requirements for adaptation-conferring Opposer modules within complex cellular networks.


Assuntos
Proteínas , Transdução de Sinais , Adaptação Fisiológica , Modelos Biológicos
19.
Adv Healthc Mater ; 12(10): e2202441, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577136

RESUMO

Nano-catalytic bacterial killing provides new opportunities to address ever-increasing antibiotic resistance. However, the intrinsic catalytic activity usually depends on a much lower pH conditions (pH = 2-5) than that in the weakly acidic bacterial microenvironments (pH = 6-7) for reactive oxygen species production by Fenton reactions. Herein, a MnSiO3 -based pH-ultrasensitive "in situ structure transformation" is first reported to significantly promote the adhesion between material and bacteria, and shorten the diffusion distance (<20 nm) to compensate ultra-short life (<200 ns) of ·OH generated by Mn2+ -mediated Fenton-like reaction, finally enhancing its nano-catalytic antibacterial performance in weakly acidic conditions. A separated spray bottle is further designed to achieve in situ gelation at the wound site, which demonstrates excellent shape adaptability to complicated and rough surfaces of wounds, allowing for long-term nano-catalyst release. As a result, bacterial-infected wound healing is efficiently promoted. Herein, the in situ sprayed nano-catalytic antibacterial gel presents a promising paradigm for bacterial infection treatment.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Cicatrização , Bactérias , Concentração de Íons de Hidrogênio
20.
Food Chem ; 402: 134241, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126581

RESUMO

A simple, ultra-sensitive, and super-stable hydrophobic SERS platform for detection of melamine in milk is developed. The hydrophobic SERS platform was constructed via directly growing hydrophobic carbon/silver nanoparticles on glass by in-situ one-step carbonization using hexadecylpyridinium chloride monohydrate as stabilizer and reducing agent. The performances of SERS platform are systematically studied by using Rhodamine 6G (R6G) as a model, which achieves detection level of 10-13 M and enhancement factor of 3.4 × 1010 for R6G detection with good uniformity and reproducibility, as well as 110 days stability in air. The FDTD simulation was used to confirm SERS enhancement mechanism. More importantly, SERS platform delivers good linear property in the range from 0.01 to 100 ppm, and low limit detection of 9 ppb for melamine detection in milk through direct drop on the platform. The SERS platform could have great applications in food safety, environmental monitoring, biomedicine and other fields.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Prata/química , Nanopartículas Metálicas/química , Leite/química , Análise Espectral Raman , Substâncias Redutoras/análise , Reprodutibilidade dos Testes , Cetilpiridínio/análise , Cloretos/análise , Limite de Detecção , Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA