Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Ultrasound Med Biol ; 50(9): 1387-1394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876912

RESUMO

OBJECTIVE: Both microbubble ultrasound contrast agents and acoustic phase change droplets (APCD) have been explored in hepatocellular carcinoma (HCC). This work aimed to evaluate changes to the HCC microenvironment following either microbubble or APCD destruction in a syngeneic pre-clinical model. METHODS: Mouse RIL-175 HCC tumors were grown in the right flank of 64 immunocompetent mice. Pre-treatment, photoacoustic volumetric tumor oxygenation, and power Doppler measurements were obtained using a Vevo 3100 system (VisualSonics, Toronto, Canada). The experimental groups received a 0.1 mL bolus injection of either Definity ultrasound contrast agent (Lantheus Medical Imaging) or APCD fabricated by condensing Definity. Following injection, ultrasound destruction was performed using flash-replenishment sequences on a Sequoia with a 10L4 probe (Siemens) for the duration of enhancement. Tumor oxygenation and power Doppler measurements were then repeated immediately post-ultrasound treatment. Twenty-four hours post-treatment, animals were euthanized, and tumors were harvested and stained for CD31, Cleaved Caspase 3 and CD45. RESULTS: Imaging biomarkers demonstrated a significant reduction in percent vascularity following either microbubble or APCD destruction in the tumor microenvironment ( p < 0.022) but no significant changes in tumor oxygenation (p = 0.12). Similarly, immunohistochemistry data demonstrated a significant decrease in CD31 expression (p < 0.042) and an increase in apoptosis (p < 0.014) in tumors treated with destroyed microbubbles or APCD relative to controls. Finally, a significant increase in CD45 expression was observed in tumors treated with APCD (p = 0.046), indicating an increase in tumor immune response. CONCLUSION: Ultrasound-triggered destruction of both microbubbles and APCD reduces vascularity, increases apoptosis, and may also increase immune response in this HCC model.


Assuntos
Carcinoma Hepatocelular , Meios de Contraste , Neoplasias Hepáticas , Microbolhas , Microambiente Tumoral , Animais , Camundongos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Modelos Animais de Doenças , Fluorocarbonos
2.
Phys Med Biol ; 69(13)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38843808

RESUMO

Objective.Super-resolution ultrasonography offers the advantage of visualization of intricate microvasculature, which is crucial for disease diagnosis. Mapping of microvessels is possible by localizing microbubbles (MBs) that act as contrast agents and tracking their location. However, there are limitations such as the low detectability of MBs and the utilization of a diluted concentration of MBs, leading to the extension of the acquisition time. We aim to enhance the detectability of MBs to reduce the acquisition time of acoustic data necessary for mapping the microvessels.Approach.We propose utilizing phase patterned waves (PPWs) characterized by spatially patterned phase distributions in the incident beam to achieve this. In contrast to conventional ultrasound irradiation methods, this irradiation method alters bubble interactions, enhancing the oscillation response of MBs and generating more significant scattered waves from specific MBs. This enhances the detectability of MBs, thereby enabling the detection of MBs that were undetectable by the conventional method. The objective is to maximize the overall detection of bubbles by utilizing ultrasound imaging with additional PPWs, including the conventional method. In this paper, we apply PPWs to ultrasound imaging simulations considering bubble-bubble interactions to elucidate the characteristics of PPWs and demonstrate their efficacy by employing PPWs on MBs fixed in a phantom by the experiment.Main results.By utilizing two types of PPWs in addition to the conventional ultrasound irradiation method, we confirmed the detection of up to 93.3% more MBs compared to those detected using the conventional method alone.Significance.Ultrasound imaging using additional PPWs made it possible to increase the number of detected MBs, which is expected to improve the efficiency of bubble detection.


Assuntos
Microbolhas , Imagens de Fantasmas , Ultrassonografia , Ultrassonografia/métodos , Meios de Contraste/química
3.
Int J Nanomedicine ; 19: 4651-4665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799698

RESUMO

Introduction: Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods: We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results: The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion: Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.


Assuntos
Meios de Contraste , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Ultrassonografia , Meios de Contraste/química , Ultrassonografia/métodos , Animais , Nanopartículas/química , Dióxido de Silício/química , Humanos , Linhagem Celular Tumoral , Camundongos , Neoplasias/diagnóstico por imagem , Microbolhas , Camundongos Nus , Camundongos Endogâmicos BALB C , Indóis
4.
Ultrason Imaging ; 46(3): 178-185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622911

RESUMO

To evaluate the inter-observer variability and the intra-observer repeatability of pulmonary transit time (PTT) measurement using contrast-enhanced ultrasound (CEUS) in healthy rabbits, and assess the effects of dilution concentration of ultrasound contrast agents (UCAs) on PTT. Thirteen healthy rabbits were selected, and five concentrations UCAs of 1:200, 1:100, 1:50, 1:10, and 1:1 were injected into the right ear vein. Five digital loops were obtained from the apical 4-chamber view. Four sonographers obtained PTT by plotting the TIC of right atrium (RA) and left atrium (LA) at two time points (T1 and T2). The frame counts of the first appearance of UCAs in RA and LA had excellent inter-observer agreement, with intra-class correlations (ICC) of 0.996, 0.988, respectively. The agreement of PTT among four observers was all good at five different concentrations, with an ICC of 0.758-0.873. The reproducibility of PTT obtained by four observers at T1 and T2 was performed well, with ICC of 0.888-0.961. The median inter-observer variability across 13 rabbits was 6.5% and the median variability within 14 days for 4 observers was 1.9%, 1.7%, 2.2%, 1.9%, respectively; The PTT of 13 healthy rabbits is 1.01 ± 0.18 second. The difference of PTT between five concentrations is statistically significant. The PTT obtained by a concentration of 1:200 and 1:100 were higher than that of 1:1, while there were no significantly differences in PTT of a concentration of 1:1, 1:10, and 1:50. PTT measured by CEUS in rabbits is feasible, with excellent inter-observer and intra-observer reliability and reproducibility, and dilution concentration of UCAs influences PTT results.


Assuntos
Meios de Contraste , Estudos de Viabilidade , Variações Dependentes do Observador , Ultrassonografia , Animais , Coelhos , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Hexafluoreto de Enxofre/farmacocinética , Circulação Pulmonar/fisiologia
5.
Ultrason Sonochem ; 104: 106831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428306

RESUMO

Ultrasonically excited microbubbles (MBs) have numerous applications in various fields, such as drug delivery, and imaging. Ultrasonically excited MBs are known to be nonlinear oscillators that generate secondary acoustic emissions in the media when excited by a primary ultrasound wave. The propagation of acoustic waves in the liquid is limited to the speed of sound, resulting in each MB receiving the primary and secondary waves at different times depending on their distance from the ultrasound source and the distance between MBs. These delays are referred to as primary and secondary delays, respectively. A previous study demonstrated that the inclusion of secondary delays in a model describing the interactions between MBs exposed to ultrasound results in an increase in the linear resonance frequency of MBs as they approach each other. This work investigates the impact of various MB properties on the change in linear resonance frequency resulting from changes in inter-bubble distances. The effects of shell properties, including the initial surface tension, surface dilatational viscosity of the shell monolayer, elastic compression modulus of the shell, and the initial radius of the MBs, are examined. MB size is a significant factor influencing the rate of linear resonance frequency increase with increasing concentration. Moreover, it is found that the shell properties of MBs play a negligible role in the rate of change in linear resonance frequency of MBs as the inter-bubble distances change.The findings of this study have implications for various applications of MBs in the biomedical field. By understanding the impact of inter-bubble distances and shell properties on the linear resonance frequency of MBs, the utilization of MBs in applications reliant on their resonant behavior can be optimized.

6.
Ultrason Imaging ; 46(2): 130-134, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38318708

RESUMO

Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes subharmonic signals from microbubble contrast agents for pressure estimation. Validation of the SHAPE technique relies on synchronous measurements of in vivo pressures using contrast microbubbles and a pressure catheter (reference standard). For the guidance and placement of pressure catheter in vivo, iodinated contrast is used with fluoroscopy. Therefore, during data acquisition for validation studies of the SHAPE technique, both contrast microbubbles and iodinated contrast are present simultaneously within the vasculature. This study aims to elucidate the effects of iodinated contrast (Visipaque, GE HealthCare) on subharmonic signal amplitude from contrast microbubbles (Definity, Lantheus Medical Imaging, Inc.). In an acrylic water tank, 0.06 mL of Definity and varied amounts of Visipaque (0.14, 0.43, 0.85, and 1.70 mL) were added to 425 mL of deionized water. Ultrasound scanning was performed with a SonixTablet scanner (BK Medical Systems) using optimized parameters for SHAPE with Definity (ftransmit/receive = 3.0/1.5 MHz; chirp down pulse). Subharmonic data was acquired and analyzed at 9 different incident acoustic outputs (n = 3). Results showed an increase in subharmonic signal amplitude from Definity microbubbles in the presence of 0.14 mL Visipaque by 2.8 ± 1.3 dB (p < .001), no change with 0.85 mL Visipaque (0.7 ± 1.2 dB; p = .09) and a decrease in subharmonic amplitude in the presence of 1.70 mL Visipaque by 1.9 ± 0.7 dB (p < .001). While statistically significant effect on subharmonic signal amplitude of Definity microbubbles was noted due to the mixture, the magnitude of the effect was minimal (~2.8 dB) and unlikely to impact in vivo SHAPE measurements.


Assuntos
Meios de Contraste , Fluorocarbonos , Ácidos Tri-Iodobenzoicos , Água , Ultrassonografia/métodos
7.
ACS Appl Bio Mater ; 7(3): 1416-1428, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391247

RESUMO

Diabetes vasculopathy is a significant complication of diabetes mellitus (DM), and early identification and timely intervention can effectively slow the progression. Accumulating studies have shown that diabetes causes vascular complications directly or indirectly through a variety of mechanisms. Direct imaging of the endothelial molecular changes not only identifies the early stage of diabetes vasculopathy but also sheds light on the precise treatment. Targeted ultrasound contrast agent (UCA)-based ultrasound molecular imaging (UMI) can noninvasively detect the expression status of molecular biomarkers overexpressed in the vasculature, thereby being a potential strategy for the diagnosis and treatment response evaluation of DM. Amounts of efforts have been focused on identification of the molecular targets expressed in the vasculature, manufacturing strategies of the targeted UCA, and the clinical translation for the diagnosis and evaluation of therapeutic efficacy in both micro- and macrovasculopathy in DM. This review summarizes the latest research progress on endothelium-targeted UCA and discusses their promising future and challenges in diabetes vasculopathy theranostics.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Humanos , Diabetes Mellitus/diagnóstico por imagem , Angiopatias Diabéticas/diagnóstico por imagem , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/terapia , Biomarcadores , Imagem Molecular/métodos
8.
Colloids Surf B Biointerfaces ; 234: 113705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194837

RESUMO

Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection. The performance of the sensor was evaluated by characterizing protein-copolymer multicomponent colloids, specifically, bovine serum albumin (BSA) and poly(N - vinyl-2 -pyrrolidone-co-acrylic acid) P(VP-AA) nano-sized complexes and microbubbles of the corresponding shell. Monocomponent solutions showed linear dependencies of RI and characteristic Raman peak intensities on mass concentration. Multicomponent Raman sensing of BSA@P(VP-AA) complexes and microbubbles revealed that changes in P(VP-AA) characteristic peak intensities can describe interactions between components needed to produce colloid systems. RI sensing of multicomponent colloids demonstrated linear dependence on total mass concentrations for BSA@P(VP-AA) complexes, while corresponding BSA@P(VP-AA) microbubbles can be detected with concentrations as high as 4.0 × 108 MB/mL. Therefore, the developed two-in-one sensor of RI and Raman scattering can be used the robust characterization of albumin-based colloids designed for therapeutic and diagnostic needs.


Assuntos
Refratometria , Análise Espectral Raman , Coloides
9.
J Ultrasound Med ; 43(1): 189-200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929626

RESUMO

Ultrasound contrast agent (UCA) use is increasing. Recent isolated reports observed a rise in pain-related adverse events with the intravenous administration of the UCA Definity in adults with sickle cell disease. To date, no studies have investigated the incidence of similar adverse events with UCA Lumason or Optison. We describe our experience regarding the safety of Lumason and Optison in children with sickle cell disease and trait who underwent contrast-enhanced ultrasound exams in our department with intravenous, intravesical, and other intracavitary routes. No pain-related or other adverse events were observed in this pediatric population with any route of UCA administration.


Assuntos
Anemia Falciforme , Meios de Contraste , Adulto , Humanos , Criança , Meios de Contraste/efeitos adversos , Ultrassonografia , Infusões Intravenosas , Anemia Falciforme/complicações , Incidência
10.
Echo Res Pract ; 10(1): 23, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964335

RESUMO

Ultrasound contrast agents (UCAs) have a well-established role in clinical cardiology. Contrast echocardiography has evolved into a routine technique through the establishment of contrast protocols, an excellent safety profile, and clinical guidelines which highlight the incremental prognostic utility of contrast enhanced echocardiography. This document aims to provide practical guidance on the safe and effective use of contrast; reviews the role of individual staff groups; and training requirements to facilitate its routine use in the echocardiography laboratory.

11.
J Control Release ; 363: 747-755, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778466

RESUMO

Sonoporation is the process where intracellular drug delivery is facilitated by ultrasound-driven microbubble oscillations. Several mechanisms have been proposed to relate microbubble dynamics to sonoporation including shear and normal stress. The present work aims to gain insight into the role of microbubble size on sonoporation and thereby into the relevant mechanism(s) of sonoporation. To this end, we measured the sonoporation efficiency while varying microbubble size using monodisperse microbubble suspensions. Sonoporation experiments were performed in vitro on cell monolayers using a single ultrasound pulse with a fixed frequency of 1 MHz while the acoustic pressure amplitude and pulse length were varied at 250, 500, and 750 kPa, and 10, 100, and 1000 cycles, respectively. Sonoporation efficiency was quantified using flow cytometry by measuring the FITC-dextran (4 kDa and 2 MDa) fluorescence intensity in 10,000 cells per experiment to average out inherent variations in the bioresponse. Using ultra-high-speed imaging at 10 million frames per second, we demonstrate that the bubble oscillation amplitude is nearly independent of the equilibrium bubble radius at acoustic pressure amplitudes that induce sonoporation (≥ 500 kPa). However, we show that sonoporation efficiency is strongly dependent on the equilibrium bubble size and that under all explored driving conditions most efficiently induced by bubbles with a radius of 4.7 µm. Polydisperse microbubbles with a typical ultrasound contrast agent size distribution perform almost an order of magnitude lower in terms of sonoporation efficiency than the 4.7-µm bubbles. We elucidate that for our system shear stress is highly unlikely the mechanism of action. By contrast, we show that sonoporation efficiency correlates well with an estimate of the bubble-induced normal stress.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Sistemas de Liberação de Medicamentos/métodos , Ultrassonografia/métodos , Meios de Contraste , Acústica
12.
Med Rev (2021) ; 3(1): 31-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724107

RESUMO

Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size. A series of acoustic nanomaterials have been developed for breaking free from this constraint. Especially, biogenic gas vesicles, gas-filled protein nanostructures from microorganisms, were engineered as the first biomolecular ultrasound contrast agents, opening the door for more direct visualization of cellular and molecular function by ultrasound imaging. The ordered protein shell structure and unique gas filling mechanism of biogenic gas vesicles endow them with excellent stability and attractive acoustic responses. What's more, their genetic encodability enables them to act as acoustic reporter genes. This article reviews the upgrading progresses of ultrasound contrast agents from microbubbles to biogenic gas vesicles, and the opportunities and challenges for the commercial and clinical translation of the nascent field of biomolecular ultrasound.

13.
Int J Nanomedicine ; 18: 4871-4884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662687

RESUMO

Purpose: Ultrasound molecular imaging (UMI) has proven promising to diagnose the onset and progression of diseases such as angiogenesis, inflammation, and thrombosis. However, microbubble-based acoustic probes are confined to intravascular targets due to their relatively large particle size, greatly reducing the application value of UMI, especially for extravascular targets. Extradomain B fibronectin (ED-B FN) is an important glycoprotein associated with tumor genesis and development and highly expressed in many types of tumors. Here, we developed a gas vesicles (GVs)-based nanoscale acoustic probe (ZD2-GVs) through conjugating ZD2 peptides which can specially target to ED-B FN to the biosynthetic GVs. Materials and Methods: ED-B FN expression was evaluated in normal liver and tumor tissues with immunofluorescence and Western blot. ZD2-GVs were prepared by conjugating ZD2 to the surface of GVs by amide reaction. The inverted microscope was used to analyze the targeted binding capacity of ZD2-GVs to MB49 cells (bladder cancer cell line). The contrast-enhanced imaging features of GVs, non-targeted control GVs (CTR-GVs), and targeted GVs (ZD2-GVs) were compared in three MB49 tumor mice. The penetration ability of ZD2-GVs in tumor tissues was assessed by fluorescence immunohistochemistry. The biosafety of GVs was evaluated by CCK8, blood biochemistry, and HE staining. Results: Strong ED-B FN expression was observed in tumor tissues while little expression in normal liver tissues. The resulting ZD2-GVs had only 267.73 ± 2.86 nm particle size and exhibited excellent binding capability to the MB49 tumor cells. The in vivo UMI experiments showed that ZD2-GVs produced stronger and longer retention in the BC tumors than that of the non-targeted CTR-GVs and GVs. Fluorescence immunohistochemistry confirmed that ZD2-GVs could penetrate the tumor vascular into the interstitial space of the tumors. Biosafety analysis revealed there was no significant cytotoxicity to these tested mice. Conclusion: Thus, ZD2-GVs can function as a potential UMI probe for the early diagnosis of bladder cancer.


Assuntos
Fibronectinas , Neoplasias da Bexiga Urinária , Animais , Camundongos , Ultrassonografia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Imagem Molecular , Acústica
14.
Front Cardiovasc Med ; 10: 1225654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600063

RESUMO

Evidence for the safe use of Lumason® (SonoVue®), an ultrasound enhancing agent (UEA), in special patient populations is critical to enable healthcare professionals to make informed decisions concerning its use in such patients. Herein, we provide insight on the safety and tolerability of Lumason® in special patient populations. Findings are presented from clinical pharmacology studies conducted in patients with compromised cardiopulmonary conditions, from a retrospective study performed in critically ill patients, and from post-marketing surveillance data from over 20 years of market use of Lumason® (SonoVue®). No detrimental effects of Lumason® on cardiac electrophysiology were observed in patients with coronary artery disease (CAD), and no significant effects on pulmonary hemodynamics were noted in patients with pulmonary hypertension or congestive heart failure. Similarly, no effects on several assessments of pulmonary function (e.g., FVC) were observed in patients with chronic obstructive pulmonary disease (COPD), and no clinically meaningful changes in O2 saturation or other safety parameters were observed after administration of Lumason® to patients with diffuse interstitial pulmonary fibrosis (DIPF). The retrospective study of critically ill patients revealed no significant difference for in-hospital mortality between patients administered Lumason® for echocardiography versus those who had undergone echocardiography without contrast agent. Post-marketing surveillance revealed very low reporting rates (RR) for non-serious and serious adverse events and that serious hypersensitivity reactions were rare. These findings confirm that Lumason® is a safe and well tolerated UEA for use in special populations and critically ill patients.

15.
J Ultrasound ; 26(4): 749-756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566194

RESUMO

Breast cancer stands as the most frequent malignancy and leading cause of death among women. Early and accurate detection of this pathology represents a crucial factor in enhancing both incidence and mortality rates. Ultrasound (US) examination has been extensively adopted in clinical practice due to its non-invasiveness, affordability, ease of implementation, and wide accessibility, thus representing a valuable first-line diagnostic tool for the study of the mammary gland. In this scenario, recent developments in nanomedicine are paving the way for new interpretations and applications of US diagnostics, which are becoming increasingly personalized based on the molecular phenotype of each tumor, allowing for more precise and accurate evaluations. This review highlights the current state-of-the-art of US diagnosis of breast cancer, as well as the recent advancements related to the application of US contrast agents to the field of molecular diagnostics, still under preclinical study.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Microbolhas , Ultrassonografia , Ultrassonografia Mamária
16.
Ultrasound Med Biol ; 49(8): 1852-1860, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246049

RESUMO

OBJECTIVE: The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS: Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS: At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION: Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia Induzida , Animais , Suínos , Microbolhas , Meios de Contraste , Ultrassonografia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Hipertermia Induzida/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
17.
Structure ; 31(5): 518-528.e6, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040766

RESUMO

Gas vesicles (GVs) are gas-filled protein nanostructures employed by several species of bacteria and archaea as flotation devices to enable access to optimal light and nutrients. The unique physical properties of GVs have led to their use as genetically encodable contrast agents for ultrasound and MRI. Currently, however, the structure and assembly mechanism of GVs remain unknown. Here we employ cryoelectron tomography to reveal how the GV shell is formed by a helical filament of highly conserved GvpA subunits. This filament changes polarity at the center of the GV cylinder, a site that may act as an elongation center. Subtomogram averaging reveals a corrugated pattern of the shell arising from polymerization of GvpA into a ß sheet. The accessory protein GvpC forms a helical cage around the GvpA shell, providing structural reinforcement. Together, our results help explain the remarkable mechanical properties of GVs and their ability to adopt different diameters and shapes.


Assuntos
Anabaena , Dolichospermum flosaquae , Dolichospermum flosaquae/metabolismo , Proteínas de Bactérias/química , Anabaena/química , Anabaena/metabolismo , Archaea
18.
Ultrasound Med Biol ; 49(7): 1550-1560, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100673

RESUMO

OBJECTIVE: The sensitivity of the acoustic response of microbubbles, specifically a strong correlation between their subharmonic response and the ambient pressure, has motivated development of a non-invasive subharmonic-aided pressure estimation (SHAPE) method. However, this correlation has previously been found to vary depending on the microbubble type, the acoustic excitation and the hydrostatic pressure range. In this study, the ambient pressure sensitivity of microbubble response was investigated. METHODS: The fundamental, subharmonic, second harmonic and ultraharmonic responses from an in-house lipid-coated microbubble were measured for excitations with peak negative pressures (PNPs) of 50-700 kPa and frequencies of 2, 3 and 4 MHz in the ambient overpressure range 0-25 kPa (0-187 mmHg) in an in vitro setup. RESULTS: The subharmonic response typically has three stages-occurrence, growth and saturation-with increasing excitation PNP. We find distinct decreasing and increasing variations of the subharmonic signal with overpressure that are closely related to the threshold of subharmonic generation in a lipid-shelled microbubble. Above the excitation threshold, that is, in the growth-saturation phase, subharmonic signals decreased linearly with slopes as high as -0.56 dB/kPa with ambient pressure increase; below the threshold excitation (at atmospheric pressure), increasing overpressure triggers subharmonic generation, indicating a lowering of subharmonic threshold, and therefore leads to an increase in subharmonic with overpressure, the maximum enhancement being ∼11 dB for 15 kPa overpressure at 2 MHz and 100 kPa PNP. CONCLUSION: This study indicates the possible development of novel and improved SHAPE methodologies.


Assuntos
Meios de Contraste , Microbolhas , Acústica , Pressão , Lipídeos , Ultrassonografia/métodos
19.
Ultrason Sonochem ; 94: 106346, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36870921

RESUMO

Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.


Assuntos
Meios de Contraste , Ultrassom , Ultrassom/métodos , Sistemas de Liberação de Medicamentos , Acústica , Ultrassonografia , Microbolhas
20.
Front Bioeng Biotechnol ; 11: 1128268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949883

RESUMO

Nanobubbles have received great attention in ultrasound molecular imaging due to their capability to pass through the vasculature and reach extravascular tissues. Recently, gas vesicles (GVs) from archaea have been reported as acoustic contrast agents, showing great potential for ultrasound molecular imaging. However, the immunogenicity and biosafety of GVs has not yet been investigated. In this study, we examined the immune responses and biosafety of biosynthetic GVs and polyethylene glycol (PEG)-modified GVs (PEG-GVs) in vivo and in vitro. Our findings suggest that the plain GVs showed significantly stronger immunogenic response than PEG-GVs. Less macrophage clearance rate of the RES and longer circulation time were also found for PEG-GVs, thereby producing the better contrast imaging effect in vivo. Thus, our study demonstrated the PEG modification of biosynthetic GVs from Halobacterium NRC-1 is helpful for the future application of GVs in molecular imaging and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA