RESUMO
In vitro cultures remain crucial for studying the fundamental mechanisms of human T-cell development. Here, we introduce a novel in vitro cultivation system based on ThymoSpheres (TS): dense spheroids consisting of DLL4-expressing stromal cells and human hematopoietic precursor cells, in the absence of thymic epithelial cells. These spheroids are subsequently cultured at the air-liquid interphase. TS generate large numbers of mature T cells, are easy to manipulate, scalable, and can be repeatably sampled to monitor T-cell differentiation. The mature T cells generated from primary human hematopoietic precursor cells were extensively characterized using single-cell RNA and combined T-cell receptor (TCR) sequencing. These predominantly CD8α T cells exhibit transcriptional and TCR CDR3 characteristics similar to the recently described human polyclonal αß unconventional T cell (UTC) lineage. This includes the expression of hallmark genes associated with agonist selection, such as IKZF2 (Helios), and the expression of various natural killer receptors. The TCR repertoire of these UTCs is polyclonal and enriched for CDR3-associated autoreactive features and early rearrangements of the TCR-α chain. In conclusion, TS cultures offer an intriguing platform to study the development of this human polyclonal UTC lineage and its inducing selection mechanisms.
RESUMO
Mucosal-associated invariant T (MAIT) cells represent a unique unconventional T cell population important in eliciting immunomodulatory responses in a range of diseases, including infectious diseases, autoimmunity and cancer. This innate-like T cell subset predominantly express CD8 in humans. Unlike conventional CD8+ T cells, which recognize peptide antigen presented by polymorphic major histocompatibility complex (MHC) molecules, MAIT cells are restricted by MR1, a non-polymorphic antigen-presenting molecule widely expressed in multiple tissues. Thus, identification of proteomic signature of MAIT cells in relation to conventional T cells is pivotal in understanding it's specific functional characteristics. The high-resolution dataset presents here comprehensively describes and compare the whole cell proteomes of MAIT (TCRVα7.2+CD161+) and conventional/non-MAIT T cells (TCR Vα7.2-CD161-) in humans. The dataset was generated using the proteomic samples prepared from matched T cell subsets sorted from peripheral blood mononuclear cells (PBMC) of three healthy volunteers. Peptides obtained from trypsin-digested cell lysates were analysed using Data-Dependent Mass Spectrometry (DDA-MS). Label-free quantitation of DDA-MS data using MaxQuant and MaxLFQ software identified 4,442 proteins at a 1 % false discovery rate. Of them, 3680 proteins that were detected with single UniProt accession and a minimum of 2 unique or razor peptides were assessed to identify differentially abundant proteins between MAIT cells and conventional T cells, including total T cells and CD8+ T cells. The dataset comprises high-quality label-free quantitative proteomic data that can be used to compare the expression pattern of whole cell proteomes between the above-mentioned T cell populations. Further, this can be used as a reference proteome of human MAIT cells for the in-depth understanding of the MAIT cell behaviour among T cells and to discover potential therapeutic targets to modulate MAIT cell function.
RESUMO
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Assuntos
Imunoterapia , Células T Matadoras Naturais , Timo , Humanos , Células T Matadoras Naturais/imunologia , Imunoterapia/métodos , Timo/imunologia , Animais , Diferenciação Celular/imunologia , Neoplasias/terapia , Neoplasias/imunologiaRESUMO
OBJECTIVE: We intended to map the single-cell profile of OLP, explore the molecular characteristics of unconventional T cells in OLP tissues. METHODS: Buccal mucosa samples from OLP patients and healthy individuals were used to prepare single-cell suspension. Single-cell RNA sequencing was used to analyze the proportion of all the cells, and the molecular characteristics of unconventional T cells. Immunohistochemical staining was used to detect the expression of unconventional T cells marker genes. RESULTS: The cell clusters from buccal mucosa were categorized into immune cells, fibroblasts, endothelial cells, and epithelial cells. Unconventional T cells with phenotype of CD247+TRDC+NCAM1+ were identified. Immunohistochemical staining revealed higher expression of unconventional T cell marker genes in OLP tissue, predominantly in the lamina propria. In OLP, unconventional T cells are in a unique stress response state, exhibited enhanced NF-κB signaling and apoptosis inhibition, enhanced heat shock protein genes expression, weakened cytotoxic function. A large number of ligand-receptor pairs were found between unconventional T cells and other cells, particularly with fibroblasts and endothelial cells. CONCLUSIONS: This study mapped the single-cell profile of OLP, delineated the molecular characteristics of unconventional T cells in OLP, and uncovered that these unconventional T cells are in a stress response state.
Assuntos
Líquen Plano Bucal , Mucosa Bucal , Análise de Célula Única , Linfócitos T , Humanos , Líquen Plano Bucal/imunologia , Líquen Plano Bucal/genética , Líquen Plano Bucal/metabolismo , Linfócitos T/imunologia , Mucosa Bucal/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto , NF-kappa B/metabolismo , Fibroblastos/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Idoso , Células Epiteliais/metabolismo , Células Epiteliais/imunologiaRESUMO
Direct interaction between T-cells exerts a major influence on tissue immunity and inflammation across multiple body sites including the human gut, which is highly enriched in 'unconventional' lymphocytes such as γδ T-cells. We previously reported that microbial activation of human Vγ9/Vδ2+ γδ T-cells in the presence of the mucosal damage-associated cytokine IL-15 confers the ability to promote epithelial barrier defence, specifically via induction of IL-22 expression in conventional CD4+ T-cells. In the current report, we assessed whether other cytokines enriched in the gut milieu also functionally influence microbe-responsive Vγ9/Vδ2 T-cells. When cultured in the presence of IL-21, Vγ9/Vδ2 T-cells acquired the ability to induce expression of the immunoregulatory cytokine IL-10 in both naïve and memory CD4+ T-cells, at levels surpassing those induced by monocytes or monocyte-derived DCs. These findings identify an unexpected influence of IL-21 on Vγ9/Vδ2 T-cell modulation of CD4+ T-cell responses. Further analyses suggested a possible role for CD30L and/or CD40L reverse signalling in mediating IL-10 induction by IL-21 conditioned Vγ9/Vδ2 T-cells. Our findings indicate that the local microenvironment exerts a profound influence on Vγ9/Vδ2 T-cell responses to microbial challenge, leading to induction of distinct functional profiles among CD4+ T-cells that may influence inflammatory events at mucosal surfaces. Targeting these novel pathways may offer therapeutic benefit in disorders such as inflammatory bowel disease.
RESUMO
In this article for the Highlights of 2023 Series, we discuss recent research on unconventional T cells with a focus on gamma delta T cell development and cancer cell targeting, as well as the contributions of MAIT cells to wound repair.
Assuntos
Neoplasias , Animais , Humanos , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Cicatrização/imunologiaRESUMO
Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.
Assuntos
Sepse , Humanos , Sepse/imunologia , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Receptores CXCR3/metabolismo , Aprendizado de Máquina , Subunidade alfa de Receptor de Interleucina-2/sangue , Subunidade alfa de Receptor de Interleucina-2/imunologia , Imunidade Celular , Linfócitos T CD4-Positivos/imunologia , Linfócitos T/imunologia , Prognóstico , Infecções por Bactérias Gram-Negativas/imunologiaRESUMO
T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.
Assuntos
Neoplasias , Subpopulações de Linfócitos T , Humanos , Microambiente TumoralRESUMO
Unconventional T cells represent a promising therapeutic agent to overcome the current limitations of immunotherapies due to their universal T-cell receptors, ability to respond directly to cytokine stimulation, and capacity to recruit and modulate conventional immune cells in the tumor microenvironment. Like conventional T cells, unconventional T cells can enter a dysfunctional state, and the functional differences associated with this state may provide insight into the discrepancies observed in their role in antitumor immunity in various cancers. The exhaustive signature of unconventional T cells differs from conventional αß T cells, and understanding the differences in the mechanisms underlying exhaustive differentiation in these cell types may aid in the discovery of new treatments to improve sustained antitumor responses. Ongoing clinical trials investigating therapies that leverage unconventional T-cell populations have shown success in treating hematologic malignancies and reducing the immunosuppressive tumor environment. However, several hurdles remain to extend these promising results into solid tumors. Here we discuss the current knowledge on unconventional T-cell function/dysfunction and consider how the incorporation of therapies that modulate unconventional T-cell exhaustion may aid in overcoming the current limitations of immunotherapy. Additionally, we discuss how components of the tumor microenvironment alter the functions of unconventional T cells and how these changes can affect tumor infiltration by lymphocytes and alter conventional T-cell responses.
Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/patologia , Subpopulações de Linfócitos T/metabolismo , Imunoterapia , Receptores de Antígenos de Linfócitos T , Microambiente TumoralRESUMO
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Linhagem da CélulaRESUMO
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αß+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αß intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αß T cells. QFL T cells require the MHC I subunit ß-2 microglobulin (ß2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αß+CD4- pathway for development of CD8αα IELs.
Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timócitos/metabolismo , Genes MHC da Classe IIRESUMO
After recognition of cognate antigen (Ag), effector CD8+ T cells secrete serine proteases called granzymes in conjunction with perforin, allowing granzymes to enter and kill target cells. While the roles for some granzymes during antiviral immune responses are well characterized, the function of others, such as granzyme C and its human ortholog granzyme H, is still unclear. Granzyme C is constitutively expressed by mature, cytolytic innate lymphoid 1 cells (ILC1s). Whether other antiviral effector cells also produce granzyme C and whether it is continually expressed or responsive to the environment is unknown. To explore this, we analyzed granzyme C expression in different murine skin-resident antiviral lymphocytes. At steady-state, dendritic epidermal T cells (DETCs) expressed granzyme C while dermal γδ T cells did not. CD8+ tissue-resident memory T cells (TRM) generated in response to cutaneous viral infection with the poxvirus vaccinia virus (VACV) also expressed granzyme C. Both DETCs and virus-specific CD8+ TRM upregulated granzyme C upon local VACV infection. Continual Ag exposure was not required for maintained TRM expression of granzyme C, although re-encounter with cognate Ag boosted expression. Additionally, IL-15 treatment increased granzyme C expression in both DETCs and TRM. Together, our data demonstrate that granzyme C is widely expressed by antiviral T cells in the skin and that expression is responsive to both environmental stimuli and TCR engagement. These data suggest that granzyme C may have functions other than killing in tissue-resident lymphocytes.
Assuntos
Antivirais , Linfócitos T CD8-Positivos , Camundongos , Humanos , Animais , Granzimas/metabolismo , Antivirais/metabolismo , Imunidade Inata , Linfócitos , Antígenos/metabolismo , Vaccinia virusRESUMO
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Assuntos
Envelhecimento , Linfócitos T , Humanos , Idoso , Diferenciação Celular , Ativação Linfocitária , Citocinas/metabolismoRESUMO
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Assuntos
Doenças Autoimunes , Doença Celíaca , Humanos , Doença Celíaca/terapia , Glutens , Dieta Livre de Glúten , DiarreiaRESUMO
Background: Reduced testosterone levels can influence immune system function, particularly T cells. Exercise during cancer reduces treatment-related side effects and provide a stimulus to mobilize and redistribute immune cells. However, it is unclear how conventional and unconventional T cells (UTC) respond to acute exercise in prostate cancer survivors compared to healthy controls. Methods: Age-matched prostate cancer survivors on androgen deprivation therapy (ADT) and those without ADT (PCa) along with non-cancer controls (CON) completed â¼45â min of intermittent cycling with 3â min at 60% of peak power interspersed by 1.5â min of rest. Fresh, unstimulated immune cell populations and intracellular perforin were assessed before (baseline), immediately following (0â h), 2â h, and 24â h post-exercise. Results: At 0â h, conventional T cell counts increased by 45%-64% with no differences between groups. T cell frequency decreased by -3.5% for CD3+ and -4.5% for CD4+ cells relative to base at 0â h with CD8+ cells experiencing a delayed decrease of -4.5% at 2â h with no group differences. Compared to CON, the frequency of CD8+CD57+ cells was -18.1% lower in ADT. Despite a potential decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+ counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell counts increased by 127% and were preferentially mobilized (+1.7%) immediately following the acute cycling bout. There were no UTC group differences. Cell counts and frequencies returned to baseline by 24â h. Conclusion: Following acute exercise, prostate cancer survivors demonstrate normal T cell and UTC responses that were comparable to CON. Independent of exercise, ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that suggests a less mature phenotype. However, higher perforin GMFI may attenuate these changes, with the functional implications of this yet to be determined.
RESUMO
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Imunoterapia , Linfócitos T CD8-Positivos/patologia , Microambiente TumoralRESUMO
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Assuntos
Queimaduras , Multiômica , Humanos , Subpopulações de Linfócitos T , Pele/metabolismo , Linfócitos T CD8-Positivos , Queimaduras/metabolismoRESUMO
Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.
Assuntos
Artrite Reumatoide , Reabsorção Óssea , Humanos , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Linfócitos T/metabolismoRESUMO
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.