RESUMO
Adhesives that excel in wet or underwater environments are critical for applications ranging from healthcare and underwater robotics to infrastructure repair. However, achieving strong attachment and controlled release on difficult substrates, such as those that are curved, rough, or located in diverse fluid environments, remains a major challenge. Here, an octopus-inspired adhesive with strong attachment and rapid release in challenging underwater environments is presented. Inspired by the octopus's infundibulum structure, a compliant, curved stalk, and an active deformable membrane for multi-surface adhesion are utilized. The stalk's curved shape enhances conformal contact on large-scale curvatures and increases contact stress for adaptability to small-scale roughness. These synergistic mechanisms improve contact across multiple length scales, resulting in switching ratios of over 1000 within ≈30 ms with consistent attachment strength of over 60 kPa on diverse surfaces and conditions. These adhesives are demonstrated through the robust attachment and precise manipulation of rough underwater objects.
RESUMO
Adhesion in aqueous environments is often hindered by the water layer on the surface of the substrate due to the water sensitivity of the adhesive, greatly limiting the application environment. Here, a borate ester dynamically crosslinked poly(ionic liquid) elastomer adhesive (PIEA) with high strength, toughness, self-healing abilities, and ionic conductivity is synthesized by copolymerizing hydrophobic ionic liquid monomer ([HPVIm][TFSI]) and 2-methoxyethyl acrylate (MEA). The adhesion strength of PIEA can increase spontaneously from almost no adhesion to 314 kPa after 12 h without any external preloading due to the dissociation of the borate ester in water, leading to noncovalent interactions between the hydroxyl groups of PIEA and the substrate. Additionally, PIEA can be developed for soft sensors or ion electrodes to enable underwater detection and communication. This strategy offers broad application potential for the development of novel underwater smart adhesives.
RESUMO
Metal adhesive synthesis typically involves heating and solvents, and the resultant adhesives lack degradability and suffer from recycling and sustainable problems. Herein, we developed a solvent-free and chemically degradable biobased adhesive (p(Elp-TA)+PVP) from thioctic acid (TA), its derivative (Elp), and polyvinylpyrrolidone (PVP). Through a rapid acid-triggered cationic ring-opening polymerization of dithiolane at ambient conditions, p(Elp-TA)+PVP adhesive could build up a strong lap shear strength of 1123 kPa in air and an underwater lap shear strength of 534 kPa to the copper plate. Molecular dynamics simulations show that compared to p(Elp-TA), the presence of an appropriate amount of PVP can significantly enhance the binding energy of the adhesive molecules to the metal substrate, and the rapid adhesion of p(Elp-TA)+PVP molecules to metal substrates was achieved through a synergistically dynamic adaptive network enhanced by hydrogen bonding, reversible dynamic bonding, and metal coordination bonding at 40 ps. More importantly, the applied p(Elp-TA)+PVP adhesive could be easily degraded and reverted to its small-molecular-weight lipoic acid species. Upon exposure to dithiothreitol, a green reducing agent, the average molecular weight of the adhesive could quickly decrease from 1603 kDa to 274 Da. This green adhesive constructed by a simple method provides a promising general strategy for developing a controlled degradable and recoverable adhesive from natural resources.
RESUMO
Conventional adhesives experience reduced adhesion when exposed to aqueous environments. The development of underwater adhesives capable of forming strong and durable bonds across various wet substrates is crucial in biomedical and engineering domains. Nonetheless, limited emphasis placed on retaining high adhesion strengths in different saline environments, addressing challenges such as elevated osmotic pressure and spontaneous dimensional alterations. Herein, a series of ionogel-based underwater adhesives are developed using a copolymerization approach that incorporates "dynamic complementary cross-linking" networks. Synergistic engineering of building blocks, cross-linking networks, pendant groups and counterions within ionogels ensures their adhesion and cohesion in brine spanning a wide salinity range. A high adhesion strength of ≈3.6 MPa is attained in freshwater. Gratifyingly, steady adhesion strengths exceeding 3.3 MPa are retained in hypersaline solutions with salinity ranging from 50 to 200 g kg-1, delivering one of the best-performing underwater adhesives suitable for diverse saline solutions. A combination of outstanding durability, reliability, deformation resistance, salt tolerance, and self-healing properties showcases the "self-contained" underwater adhesion. This study shines light on the facile fabrication of catechol-free ionogel-based adhesives, not merely boosting adhesion strengths in freshwater, but also broadening their applicability across various saline environments.
RESUMO
The demand for underwater pressure sensitive adhesives (PSAs) is rapidly increasing in fields such as underwater engineering and biomedicine. However, the achievement of underwater adhesion of PSAs remains a challenge because of the hydration layer that hinders the interaction between the adhesive and the substrate. Herein, a new type of underwater PSA was synthesized by the copolymerization of hydrophobic unsaturated poly(1,2-butylene oxide) (UPBO) and hydrophilic itaconic acid monomers using solvent-free ultraviolet curing. The PSA has demonstrated substrate-independent underwater adhesion strengths ranging from 108 to 141 kPa on both hydrophilic (glass, wood, steel) and hydrophobic (PET, PMMA, PTFE) substrates. The underwater adhesion performance of PSA remains stable during 30 adhesion-detachment cycles and incubation in water for 20 days. Notably, PSA shows cytocompatibility, antimicrobial, and degradable properties and can be used for rapid hemostasis of skin wounds. Experimental characterizations confirm that the process of underwater adhesion is achieved by hydrophobic alkyl side chains of the PBO chain segments, which repel water at the adhesive-substrate interface. This study should provide both practical and facile design strategies for multifunctional underwater PSAs that can be used in a variety of applications.
RESUMO
Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.
Assuntos
Adesivos , Antibacterianos , Dimetilpolisiloxanos , Raios Infravermelhos , Antibacterianos/farmacologia , Antibacterianos/química , Adesivos/química , Adesivos/farmacologia , Dimetilpolisiloxanos/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacosRESUMO
Calcium ion (Ca2+) is involved in the protein-mediated larval adhesion of fouling ascidians, yet the effects of environmental Ca2+ on larval adhesion remain largely unexplored. Here, the larvae of fouling ascidian C. robusta were exposed to different concentrations of Ca2+. Exposures to low-concentration (0 mM and 5 mM) and high-concentration (20 mM and 40 mM) Ca2+ significantly decreased the adhesion rate of larvae, which was primarily attributed to the decreases in adhesive structure length and curvature. Changes in the expressions of genes encoding adhesion-, microvilli-, muscle contraction-, and collagen-related proteins provided a molecular-level explanation for adhesion rate reduction. Additionally, larvae likely prioritized their energy towards immunomodulation in response to Ca2+ stresses, ultimately leading to adhesion reduction. These findings advance our understanding of the influencing mechanisms of environmental Ca2+ on larval adhesion, which are expected to provide references for the development of precise antifouling strategies against ascidians and other fouling species.
Assuntos
Incrustação Biológica , Urocordados , Animais , Cálcio , Urocordados/química , Larva , Proteínas , Fenômenos FísicosRESUMO
Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.
Assuntos
Ligação de Hidrogênio , Úlcera Gástrica , Animais , Úlcera Gástrica/tratamento farmacológico , Injeções , Adesivos Teciduais/química , Adesivos/química , Fibroínas/química , Taninos/química , Ratos Sprague-DawleyRESUMO
Integrating hydrogel with other materials is always challenging due to the low mass content of hydrogels and the abundance of water at the interfaces. Adhesion through nanoparticles offers characteristics such as ease of use, reversibility, and universality, but still grapples with challenges like weak bonding. Here, a simple yet powerful strategy using the formation of nanoparticles in situ is reported, establishing strong interfacial adhesion between various hydrogels and substrates including elastomers, plastics, and biological tissue, even under wet conditions. The strong interfacial bonding can be formed in a short time (60 s), and gradually strengthened to 902 J m-2 adhesion energy within an hour. The interfacial layer's construction involves chain entanglement and other non-covalent interactions like coordination and hydrogen bonding. Unlike the permanent bonding seen in most synthetic adhesives, these nanoparticle adhesives can be efficiently triggered for removal by acidic solutions. The simplicity of the precursor diffusion and precipitation process in creating the interfacial layer ensures broad applicability to different substrates and nanoparticle adhesives without compromising robustness. The tough adhesion provided by nanoparticles allows the hydrogel-elastomer hybrid to function as a triboelectric nanogenerator (TENG), facilitating reliable electrical signal generation and output performance due to the robust interface.
RESUMO
Hydrogel adhesives with integrated functionalities are still required to match their ever-expanding practical applications in the field of tissue repair and regeneration. A simple and effective safety strategy is reported, involving an in situ injectable polymer precursor and visible light-induced cross-linking. This strategy enables the preparation of a hydrogel adhesive in a physiological environment, offering wet adhesion to tissue surfaces, molecular flexibility, biodegradability, biocompatibility, efficient hemostatic performance, and the ability to facilitate liver injury repair. The proposed one-step preparation process of this polymer precursor involves the mixing of gelatin methacryloyl (GelMA), poly(thioctic acid) [P(TA)], poly(acrylic acid)/amorphous calcium phosphate (PAAc/ACP, PA) and FDA-approved photoinitiator solution, and a subsequent visible light irradiation after in situ injection into target tissues that resulted in a chemically-physically cross-linked hybrid hydrogel adhesive. Such a combined strategy shows promise for medical scenarios, such as uncontrollable post-traumatic bleeding.
Assuntos
Hemostáticos , Hidrogéis , Hidrogéis/farmacologia , Adesivos , Gelatina/farmacologia , Polímeros , LuzRESUMO
With the fast development of soft electronics, underwater adhesion has become a highly desired feature for various sensing uses. Currently, most adhesive hydrogels are based on catechol-based structures, such as polydopamine, pyrogallol, and tannic acid, with very limited structural variety. Herein, a new type of glycopolymer-based underwater adhesive hydrogel has been prepared straightforwardly by random copolymerization of acrylic acid, acetyl-protected/unprotected glucose, and methacrylic anhydride in dimethyl sulfoxide (DMSO). By employing a DMSO-water solvent exchange strategy, the underwater adhesion was skillfully induced by the synergetic effects of hydrophobic aggregation and hydrogen bonding, leading to excellent adhesion behaviors on various surfaces, including pig skins, glasses, plastics, and metals, even after 5 days of storage in water. In addition, the underwater adhesive hydrogels with simple and low-cost protected/unprotected carbohydrate compositions showed good mechanical and rheological properties, together with cytocompatibility and antiswelling behavior in water, all of which are beneficial for underwater adhesions. In application as a flexible strain sensor, the adhesive hydrogel exhibited stable and reliable sensing ability for monitoring human motion in real time, suggesting great potential for intelligent equipment design.
Assuntos
Anidridos , Dimetil Sulfóxido , Humanos , Animais , Suínos , Hidrogéis , ÁguaRESUMO
Bone retention is a usual clinical problem existing in a lot of maxillofacial surgeries involving bone reconstruction and bone transplantation, which puts forward the requirements for bone adhesives that are stable, durable, biosafe, and biodegradable in wet environment. To relieve the suffering of patients during maxillofacial surgery with one-step operation and satisfying repair, herein, we developed a double-cross-linked A-O hydrogel named by its two components: [(3-Aminopropyl) methacrylamide]-co-{[Tris(hydroxymethyl) methyl] acrylamide} and oxidated methylcellulose. With excellent bone adhesion ability, it can maintain long-lasting stable underwater bone adhesion for over 14 days, holding a maximum adhesion strength of 2.32 MPa. Schiff-base reaction and high-density hydrogen bonds endow the hydrogel with strong cohesion and adhesion performance as well as maneuverable properties such as easy formation and injectability. A-O hydrogel not only presents rarely reported long-lasting underwater adhesion of hard tissue but also owns inherent biocompatibility and biodegradation properties with a porous structure that facilitates the survival of bone graft. Compared to the commercial cyanoacrylate adhesive (3 M Vetbond Tissue Adhesive), the A-O hydrogel is confirmed to be safer, more stable, and more effective in calvarial in situ bone retention model and onlay bone retention model of rat, providing a practical solution for the everyday scenario of clinical bone retention.
Assuntos
Hidrogéis , Adesivos Teciduais , Humanos , Ratos , Animais , Hidrogéis/química , Adesivos/química , Adesivos Teciduais/farmacologia , Adesivos Teciduais/química , Aderências Teciduais , CianoacrilatosRESUMO
The development of hydrogel-based underwater electronics has gained significant attention due to their flexibility and portability compared to conventional rigid devices. However, common hydrogels face challenges such as swelling and poor underwater adhesion, limiting their practicality in water environments. Here, a water-induced phase separation strategy to fabricate hydrogels with enhanced anti-swelling properties and underwater adhesion is presented. By leveraging the contrasting affinity of different polymer chains to water, a phase-separated structure with rich hydrophobic and dilute hydrophilic polymer phases is achieved. This dual-phase structure, meticulously characterized from the macroscopic to the nanoscale, confers the hydrogel network with augmented retractive elastic forces and facilitates efficient water drainage at the gel-substrate interface. As a result, the hydrogel exhibits remarkable swelling resistance and long-lasting adhesion to diverse substrates. Additionally, the integration of carboxylic multiwalled carbon nanotubes into the hydrogel system preserves its anti-swelling and adhesion properties while imparting superior conductivity. The conductive phase-separated hydrogel exhibited great potential in diverse underwater applications, including sensing, communication, and energy harvesting. This study elucidates a facile strategy for designing anti-swelling underwater adhesives by leveraging the ambient solvent effect, which is expected to offer some insights for the development of next-generation adhesive soft materials tailored for aqueous environments.
RESUMO
The underlying principle of the unique dynamic adaptive adhesion capability of a rock-climbing fish (Beaufortia kweichowensis) that can resist a pull-off force of 1000 times its weight while achieving simultaneous fast sliding (7.83 body lengths per second (BL/S)) remains a mystery in the literature. This adhesion-sliding ability has long been sought for underwater robots. However, strong surface adhesion and fast sliding appear to contradict each other due to the need for high surface contact stress. The skillfully balanced mechanism of the tight surface adhesion and fast sliding of the rock-climbing fish is disclosed in this work. The Stefan force (0.1 mN/mm2) generated by micro-setae on pectoral fins and ventral fins leads to a 70 N/m2 adhesion force by conforming the overall body of the fish to a surface to form a sealing chamber. The pull-off force is neutralized simultaneously due to the negative pressure caused by the volumetric change of the chamber. The rock-climbing fish's micro-setae hydrodynamic interaction and sealing suction cup work cohesively to contribute to low friction and high pull-off-force resistance and can therefore slide rapidly while clinging to the surface. Inspired by this unique mechanism, an underwater robot is developed with incorporated structures that mimic the functionality of the rock-climbing fish via a micro-setae array attached to a soft self-adaptive chamber, a setup which demonstrates superiority over conventional structures in terms of balancing tight underwater adhesion and fast sliding.
RESUMO
Underwater adhesion involves bonding substrates in aqueous environments or wet surfaces, with applications in wound dressing, underwater repairs, and underwater soft robotics. In this study, we investigate the underwater adhesion properties of a polyacrylic acid hydrogel coated substrate. The underwater adhesion is facilitated through hydrogen bonds formed at the interface. Our experimental results, obtained through probe-pull tests, demonstrate that the underwater adhesion is rapid and remains unaffected by contact pressure and pH levels ranging from 2.5 to 7.0. However, it shows a slight increase with a larger adhesion area. Additionally, we simulate the debonding process and observe that the high-stress region originates from the outermost bonding region and propagates towards the center, spanning the thickness of the target substrate. Furthermore, we showcase the potential of using the underwater adhesive hydrogel coating to achieve in-situ underwater bonding between a flexible electronic demonstration device and a hydrogel contact lens. This work highlights the advantages of employing hydrogel coatings in underwater adhesion applications and serves as inspiration for the advancement of underwater adhesive hydrogel coatings capable of interacting with a wide range of substrates through diverse chemical and physical interactions at the interface.
RESUMO
Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.
RESUMO
In nearly all cases of underwater adhesion, water molecules typically act as a destroyer. Thus, removing interfacial water from the substrate surfaces is essential for forming super-strong underwater adhesion. However, current methods mainly rely on physical means to dislodge interfacial water, such as absorption, hydrophobic repulsion, or extrusion, which are inefficient in removing obstinate hydrated water at contact interface, resulting in poor adhesion. Herein, we present a unique means of reversing the role of water to assist in realizing a self-strengthening liquid underwater adhesive (SLU-adhesive) that can effectively remove water at contact interface. This is achieved through multiscale physical-chemical coupling methods across millimeter to molecular levels and self-adaptive strengthening of the cohesion during underwater operations. As a result, strong adhesion over 1,600 kPa (compared to ~100 to 1,000 kPa in current state of the art) can be achieved on various materials, including inorganic metal and organic plastic materials, without preloading in different environments such as pure water, a wide range of pH solutions (pH = 3 to 11), and seawater. Intriguingly, SLU-adhesive/photothermal nanoparticles (carbon nanotubes) hybrid materials can significantly reduce the time required for complete curing from 24 h to 40 min using near-infrared laser radiation due to unique thermal-response of the chemical reaction rate. The excellent adhesion property and self-adaptive adhesion procedure allow SLU-adhesive materials to demonstrate great potential for broad applications in underwater sand stabilization, underwater repair, and even adhesion failure detection as a self-reporting adhesive. This concept of "water helper" has potential to advance underwater adhesion and manufacturing strategies.
RESUMO
Ionogels with self-healing properties have become more and more desirable because they can improve the reliability, safety, and fatigue-resistant performance of flexible devices. However, the self-healing property of ionogels is usually susceptible to water molecules, and the application of ionogel sensors is limited to the atmospheric environment. Inspired by gelatinous jellyfish, herein, an underwater self-healing ionogel was prepared via one-step photoinitiated polymerization of acrylic acid 2,2,2-trifluoroethyl ester and N-isopropylacrylamide (NIPAm) in a hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]). The dynamic physical interactions (hydrogen bonding and ion-dipole interactions) endowed the ionogel with remarkable transparency, underwater self-healing (up to 96%), toughness (3.93 MJ m-3), and underwater adhesion. And the cross-linking ionogel could be green recycled by ethanol for further application. Especially, the ionogel-based sensor presented excellent strain and pressure sensing sensitivity, rapid responsiveness (140 ms), and ultrastability. The ionogel could be further assembled into an optical camouflage sensor to detect and distinguish different human motions in real time with high sensitivity, stability, and repeatability, as well as for underwater electrocardiography monitoring wirelessly. This ionogel provides a promising strategy for the development of underwater self-healing sensors.
Assuntos
Eletrocardiografia , Ésteres , Humanos , Reprodutibilidade dos Testes , Etanol , AlimentosRESUMO
Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of ß-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.
Assuntos
Thoracica , Animais , Thoracica/química , Thoracica/metabolismo , Biomineralização , Cimentos de Resina/metabolismo , Amiloide/metabolismoRESUMO
Adhesives with strong and stable underwater adhesion performance play a critical role in industrial and biomedical fields. However, achieving strong underwater adhesion, especially in flowing aqueous and blood environments, remains challenging. In this work, a novel solvent-exchange-triggered adhesive of catechol-functionalized polyethylenimine ethoxylated is presented. The authors show that the dimethyl sulfoxide (DMSO) solution of the catechol-functionalized polymer can be directly applied to various substrates and exhibits robust dry/underwater adhesion performance induced through in situ liquid-to-solid phase transition triggered by water-DMSO solvent exchange. The adhesive can even strongly bond low-surface-energy substrates (e.g., > 86 kPa for polytetrafluoroethylene) in diverse environments, including deionized water, air, phosphate-buffered saline solution, seawater, and aqueous conditions with different pH values. Moreover, the adhesive exhibits strong adhesion to biological tissues and can be used as a hemostatic sealant to prevent bleeding from arteries and severe trauma to the viscera. The adhesives developed in this study with strong dry/underwater adhesion performance and excellent hemostatic capabilities display enormous application prospects in the biomedical fields.