Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Sports Act Living ; 6: 1405118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873231

RESUMO

Background: Vertical stiffness (Kvert) can be used to evaluate sports performance and injury risk in players. The My Jump 2 smartphone application (App), is increasingly being used by researchers, coaches, and players in the competitive sports field. We aimed to analyze the reliability and concurrent validity of the My Jump 2 app for measuring Kvert in male college players. Methods: Twenty male college players (10 soccer players, 10 basketball players; age, 20.2 ± 1.3 years old; weight, 76.4 ± 6.0 kg; height, 178.3 ± 4.7 cm) volunteered to take part in this study. Three drop jumps were performed by participants from 30 cm to 40 cm on a force platform and retested after three days. All the jumps were recorded by both the Force platform and the My Jump 2 app. Data obtained from the above two devices were compared using the paired t tests, intraclass correlation coefficient (ICC), coefficient of variation (CV), Pearson product moment correlation coefficient (r), Bland-Altman plots, and one-way regression. Results: There was almost perfect agreement between measurement instruments for the Kvert value (ICC > 0.972, 95% CI = 0.954-0.992, P < 0.01). Almost perfect agreement was observed between evaluators (ICC > 0.989, 95% CI = 0.981-0.997, P < 0.05). Also, the My Jump 2 app showed excellent intra-rater reliability in all participants (ICC = 1.000, 95% CI = 1.000-1.000, P < 0.001). The My Jump 2 showed good variability when measuring Kvert at T1 30 cm (CV = 5.4%), T1 40 cm (CV = 6.7%), T2 30 cm (CV = 5.0%), and T2 40 cm (CV = 10.3%). The test-retest reliability of My Jump 2 was moderate to good at 30 cm (ICC = 0.708, 95% CI = 0.509-0.827); however, it was lower to moderate at 40 cm (ICC = 0.445, 95% CI = 0.222-0.625). Very large correlations were observed between the force platform and the My Jump 2 for Kvert (r > 0.9655, P < 0.001). Conclusion: The My Jump 2 smartphone application showed excellent reliability and intra-rater consistency in measuring Kvert in male college players. While demonstrating excellent intra-rater consistency and strong agreement with force platform measurements, it showed slightly lower reliability at higher jump heights. Overall, the My Jump 2 app is a valid tool for evaluating Kvert in college players with careful consideration of its limitations, particularly at higher jump heights.

2.
Front Physiol ; 13: 1059221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518102

RESUMO

Background: Lower extremity stiffness simulates the response of the lower extremity to landing in running. However, its relationship with running economy (RE) remains unclear. This study aims to explore the relationship between lower extremity stiffness and RE. Methods: This study utilized articles from the Web of Science, PubMed, and Scopus discussing the relationships between RE and indicators of lower extremity stiffness, namely vertical stiffness, leg stiffness, and joint stiffness. Methodological quality was assessed using the Joanna Australian Centre for Evidence-Based Care (JBI). Pearson correlation coefficients were utilized to summarize effect sizes, and meta-regression analysis was used to assess the extent of this association between speed and participant level. Result: In total, thirteen studies involving 272 runners met the inclusion criteria and were included in this review. The quality of the thirteen studies ranged from moderate to high. The meta-analysis results showed a negative correlation between vertical stiffness (r = -0.520, 95% CI, -0.635 to -0.384, p < 0.001) and leg stiffness (r = -0.568, 95% CI, -0.723 to -0.357, p < 0.001) and RE. Additional, there was a small negative correlation between knee stiffness and RE (r = -0.290, 95% CI, -0.508 to -0.037, p = 0.025). Meta-regression results showed that the extent to which leg stiffness was negatively correlated with RE was influenced by speed (coefficient = -0.409, p = 0.020, r 2 = 0.79) and participant maximal oxygen uptake (coefficient = -0.068, p = 0.010, r 2 = 0.92). Conclusion: The results of this study suggest that vertical, leg and knee stiffness were negatively correlated with RE. In addition, maximum oxygen uptake and speed will determine whether the runner can take full advantage of leg stiffness to minimize energy expenditure.

3.
Materials (Basel) ; 15(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431533

RESUMO

Rubber bearings are widely used to protect civil structures from destructive earthquakes. The mechanical properties of the bearings are the key technical parameters that determine the seismic isolation performance of isolated structures. To estimate the probability distribution of the mechanical properties related to rubber bearings (including horizontal stiffness, vertical stiffness, post-yield stiffness and yield force) under seismic events. Typical natural rubber bearings (NRBs) and lead-core rubber bearings (LRBs) were designed and fabricated, and the bearings were subjected to repeated load tests using a compression-shear testing machine. The test results of the horizontal and vertical mechanical properties of the bearings in the tests were basically consistent with the design values, and the rubber bearings showed stable mechanical behavior under repeated cyclic loading. The statistical analysis of the test results revealed that the relevant mechanical properties of the NRB and LRB specimens followed a lognormal or general extreme distribution with coefficients of variation mainly ranging from 0.86% to 5.6%. The dispersion of the yield force of LRB was the largest in the repeated tests of many mechanical parameters of typical rubber bearings.

4.
Front Physiol ; 13: 948442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277222

RESUMO

The purpose of the present study was to investigate whether and how dynamic stretching of the plantarflexors may influence running economy. A crossover design with a minimum of 48 h between experimental (dynamic stretching) and control conditions was used. Twelve recreational runners performed a step-wise incremental protocol to the limit of tolerance on a motorised instrumented treadmill. The initial speed was 2.3 m/s, followed by increments of 0.2 m/s every 3 min. Dynamic joint stiffness, vertical stiffness and running kinematics during the initial stage of the protocol were calculated. Running economy was evaluated using online gas-analysis. For each participant, the minimum number of stages completed before peak O2 uptake (V̇O2peak) common to the two testing conditions was used to calculate the gradient of a linear regression line between V̇O2 (y-axis) and speed (x-axis). The number of stages, which ranged between 4 and 8, was used to construct individual subject regression equations. Non-clinical forms of magnitude-based decision method were used to assess outcomes. The dynamic stretching protocol resulted in a possible decrease in dynamic ankle joint stiffness (-10.7%; 90% confidence limits ±16.1%), a possible decrease in vertical stiffness (-2.3%, ±4.3%), a possibly beneficial effect on running economy (-4.0%, ±8.3%), and very likely decrease in gastrocnemius medialis muscle activation (-27.1%, ±39.2%). The results indicate that dynamic stretching improves running economy, possibly via decreases in dynamic joint and vertical stiffness and muscle activation. Together, these results imply that dynamic stretching should be recommended as part of the warm-up for running training in recreational athletes examined in this study.

5.
J Sports Sci ; 40(19): 2143-2152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36309478

RESUMO

This study examined whether analysing kinetic features of drop jumps (DJ) as one-dimensional biomechanical curves can reveal specific patterns that are consistent and can cluster DJ performance. Hierarchical clustering analysis on DJ from 40 cm data performed by 128 physically active male participants (23.0 ± 4.5 yrs, 1.84 ± 0.07 m, 79.1 ± 10.8 kg) was performed on the derived time-normalised force, power and vertical stiffness curves to unmask the underlying patterns and to explore the dissimilarities identified from the subgroup (cluster) analysis. Results revealed poor, average and top DJ performers. Top performers exhibited larger peak force, power and vertical stiffness compared to the other two groups, and the poor performers had lower values compared to the average performers (p < .05). The time curves of force, power and vertical stiffness exhibited between cluster dissimilarities from ~25% to ~70%, and ~20% to 40% plus ~55% to 70% from the beginning of the ground contact, respectively. The force and power time-curves distinguished DJ ability similarly since they shared 69% of the cases in the top performers' cluster. The content of cases (membership) for vertical stiffness was different from the membership for the force and power time-curve clusters. In conclusion, stiffness should be considered during plyometric training, but does not distinctly define DJ performance.


Assuntos
Exercício Pliométrico , Humanos , Masculino , Fenômenos Biomecânicos , Cinética , Análise por Conglomerados
6.
Sports Biomech ; : 1-18, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164663

RESUMO

Knowledge of uncertainty is valuable mainly in correctly appraising measured effects. In lower limb stiffness, which affects injury risk and athletic performance, uncertainty is often related to vertical (Kvert) and leg (Kleg) stiffness. Imprecisions in measurements of body mass (M), leg length (L), contact (tc) and flight (tf) time propagate through the calculations, augment stiffness uncertainty and inflate relevant effects. This study estimated the limits of this uncertainty as probable (Eprob) and upper bound (Eupper) errors by applying Taylor series expansion on Monte-Carlo simulated data. Eprob and Eupper were 1285 ± 221 N/m (3.9 ± 0.2%) and 1441 ± 248 N/m (4.4 ± 0.3%) in Kvert, and 222 ± 61 N/m (2.1 ± 0.1%) and 375 ± 109 N/m (3.6 ± 0.3%) in Kleg, respectively. To avoid the complexities of full Taylor series expansion, Eprob was predicted (R2 ≈ 1) more simply as 0.89Eupper in Kvert and 11 + 0.56Eupper in Kleg. These uncertainties reflect mostly errors in tc and tf, and uncertainty in Fmax, at kinematic sampling of 300 Hz and running at 4-5 m/s. With slower sampling or faster running these uncertainties rise, and their impact on similar lower limb stiffness effects could be substantial. Applying Taylor series expansion for error propagation on Monte-Carlo simulated data is valid for uncertainty analysis in any multivariable functional relationship.

7.
Eur J Sport Sci ; 22(2): 182-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33406998

RESUMO

Vertical stiffness has been highlighted as a potential determinant of performance and may be estimated across a range of different performance tasks. The aim of the current study was to investigate the relationship between vertical stiffness determined during 9 different hopping tests and performance of vertical jumps. Twenty healthy, active males performed vertical hopping tests with three different strategies (self-selected, maximal, and controlled) and three different limb configurations (bilateral, unilateral preferred, and unilateral non-preferred), resulting in nine different variations, during which vertical stiffness was determined. In addition, participants performed squat jump (SQJ) and countermovement jump (CMJ) during which jump height, CMJ stiffness, and eccentric utilization ratio (EUR) were determined. Vertical stiffness in bilateral and unilateral preferred tasks performed with a self-selected and maximal, but not controlled, strategy was associated with stiffness in the CMJ (r = 0.61-0.64; p < 0.05). However, stiffness obtained during unilateral preferred and non-preferred hopping with self-selected strategy was negatively associated with performance in SQJ and CMJ tasks (r = -0.50 to -0.57; p < 0.05). These findings suggest that high levels of vertical stiffness may be disadvantageous to static vertical jumping performance. In addition, unilateral hopping with a self-selected strategy may be the most appropriate task variation if seeking to determine relationships with vertical jumping performance.Highlights Stiffness obtained during unilateral hopping with a preferred strategy was negatively associated with vertical jumping performancesStiffness obtained during hopping with preferred and maximal strategies was associated with stiffness obtained during a countermovement jumpIn this population, hopping stiffness may therefore be reflective of an individual's countermovement jump strategyHigh levels of stiffness may be disadvantageous to static-start vertical jumping.


Assuntos
Movimento , Análise e Desempenho de Tarefas , Humanos , Masculino , Postura
8.
Hum Mov Sci ; 78: 102821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022547

RESUMO

INTRODUCTION: Individuals with Down syndrome (DS) show a delayed acquisition of gross motor skills. Among gross motor skills, hopping is a particular form of jumping that can be performed using one leg. Despite its large use during play and physical activity, this skill in adults with DS has not received much attention so far. Here, we aim at investigating hopping skill in adults with DS both from a quantitative and qualitative point of view. METHODS: Center of mass and dominant leg kinematics during hopping over distance were recorded from 24 adult individuals with DS and from 21 typically developed adults (TD) using two inertial measurement units positioned on the posterior aspect of the lower back and on the lateral malleolus of the hopping leg. From linear acceleration and angular velocity signals, hopping frequency (HF), cycle, stance and flight duration (CD, SD, FD), vertical stiffness (KV) and peak to peak linear acceleration and angular velocities about the cranio-caudal, antero-posterior and medio-lateral axes were extracted. A qualitative process assessment of the hopping skill was carried out using the performance criteria of the test for gross motor development (TGMD-3). The extracted parameters were submitted to analysis of covariance, with stature as a covariate to rule-out possible confounding effects. RESULTS: The qualitative assessment highlighted a poorer hopping performance in the DS group compared to the TD group. DS participants showed higher HF and KV, shorter CD, SD, FD and lower angular velocity about the cranio-caudal axis compared to the TD group. Significant correlations between the temporal parameters of the quantitative assessment and the results of the qualitative assessment were observed. DISCUSSION: The poorer motor competence in hopping in individuals with DS compared to TD peers may be related to the shorter flight time and higher vertical stiffness observed in TD peers. The adopted instrumental approach, overcoming the limitations of subjective evaluations, represents a promising opportunity to quantify motor competence in hopping.


Assuntos
Síndrome de Down , Aceleração , Adulto , Dorso , Fenômenos Biomecânicos , Humanos , Movimento
9.
Gait Posture ; 84: 175-181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341464

RESUMO

BACKGROUND: While mini-trampolines have been used among a variety of groups including children as an intervention tool, the motor behavior children adopt while hopping on this soft, elastic surface is unknown. Identifying coordinative structures and their stability for hopping on a mini-trampoline is imperative for recommending future interventions and determining appropriateness to populations with motor dysfunctions. RESEARCH QUESTION: Do children demonstrate similar biomechanical and coordination patterns as adults while hopping on a mini-trampoline? METHODS: Fifteen adults aged 18-35 years and 14 children aged 7-12 years completed bouts of continuous two-legged hopping in-place on a stiff surface for 10 s at a time and on a mini-trampoline for 30 s at a time. 3-D motion capture tracked whole-body movement. We evaluated whole-body vertical stiffness as a ratio of peak vertical force and peak vertical displacement, as well as spatiotemporal parameters of hopping. Coordinative structures were evaluated as continuous relative phase angles of the foot, shank, thigh, and pelvis segments. RESULTS AND SIGNIFICANCE: Adults did not modify whole-body vertical stiffness on a mini-trampoline, while children increased whole-body vertical stiffness to compensate for the reduced surface stiffness. Both groups conserved the coordinative structure for hopping on a mini-trampoline by modulating hopping cycle timing. Moreover, children hopped with an adult-like coordinative structure, but required greater shank-thigh and thigh-pelvis out-of-phase motion. However, the consistency of their coordination was diminished compared to adults. Children aged 7-12 years old have formed a stable coordinative structure for spring-mass center-of-mass dynamics that is preserved on this soft, elastic surface. However, children might be developing control strategies for preferred whole-body vertical stiffness, particularly when required to dampen peak vertical forces. These results highlight the importance of evaluating the emerging motor behavior to manipulated environmental constraints, particularly when considering the utility and appropriateness of mini-trampoline interventions for children with motor dysfunctions.


Assuntos
Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
10.
J. Phys. Educ. ; 32: e3232, 2021. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1356415

RESUMO

ABSTRACT The aim was to verify the reliability and sensitivity of countermovement jump (CMJ) derived variables in detecting small, moderate and large changes and whether the capacity of CMJ-derived variables in detecting fatigue is dependent of the volume of the fatiguing exercise. Seventeen physically active men performed two fatigue protocols, on separate weeks, composed by continuous vertical jumps: short protocol (7 x 10 jumps) and long protocol (14 x 10 jumps). Jump height (JH), power output (PO), impulse (IMP) and vertical stiffness (KVERT) were measured during CMJ prior to and immediately after the fatigue protocols. Intraclass coefficient correlation, typical error, smallest worthwhile change and magnitude-based inference were analyzed. PO and JH presented excellent reliability and good sensitivity to detect small and medium changes, respectively. Negative effects of fatigue could be detected most likely by PO, regardless of fatiguing exercise volume. JH and IMP seem to be affected only after long protocol and KVERT only after short protocol. In conclusion, PO (peak and mean) is the better marker in CMJ with excellent reliability and sensibility, which allows detect even the small effects and differentiate the fatigue levels.


RESUMO O objetivo foi verificar a reprodutibilidade e a sensibilidade de variáveis derivadas do salto com contra movimento (CMJ) na detecção de pequenas, moderadas e grandes alterações e se a capacidade das variáveis em detectar fadiga é dependente do volume do exercício fatigante. Dezessete homens fisicamente ativos realizaram dois protocolos de fadiga, em semanas separadas, compostos por saltos verticais contínuos: protocolo curto (7 x 10 saltos) e protocolo longo (14 x 10 saltos). A altura do salto (JH), a potência (PO), o impulso (IMP) e a rigidez vertical (KVERT) foram mensurados durante o CMJ antes e imediatamente após os protocolos de fadiga. Foram avaliados o coeficiente de correlação intraclasse, erro típico de medida, mínima mudança valiosa e magnitude baseada em inferência. PO e JH apresentaram excelente reprodutibilidade e boa sensibilidade para detectar pequenas e médias alterações, respectivamente. Os efeitos da fadiga podem ser detectados mais provavelmente pela PO, independentemente do volume de exercício fatigante. JH e IMP parecem ser afetados somente após protocolo longo e KVERT somente após protocolo curto. Em conclusão, PO (pico e média) é o um marcador melhor durante o CMJ com excelente reprodutibilidade e sensibilidade, o que permite detectar até mesmo pequenos efeitos e diferenciar níveis de fadiga.

11.
Sci Prog ; 103(3): 36850420940898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32691678

RESUMO

In order to study the characteristics of a rolling lobe air spring, a vertical stiffness analytical model is constructed based on thermodynamics and hydrodynamics. The merit of this vertical stiffness analytical model is that an analytical solution of geometric parameters is obtained by an approximate analytic method. Meanwhile, experimental tests are carried out to verify the accuracy of the vertical stiffness analytical model. The vertical stiffness analytical model can be used to qualitatively analyze the influence of geometric parameters on the vertical stiffness characteristics of a rolling lobe air spring. Therefore, the relationship between geometric parameters and the vertical stiffness characteristics is analyzed based on the proposed model. The conclusions show that the vertical stiffness analytical model can well predict the mechanical characteristics of a rolling lobe air spring and provide guidance for parameter design and vehicle ride comfort improvement.

12.
J Bodyw Mov Ther ; 24(1): 281-288, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31987558

RESUMO

OBJECTIVE: This study investigated the effect of brief static and dynamic stretching on spring-mass leg stiffness in a vertical bilateral hopping task. METHOD: 38 men and 18 women were randomly assigned to either a natural (NAT; n = 27), or maximal (MAX; n = 29) hopping group. NAT bounced at their self-selected stiffness and MAX were instructed to bounce as stiffly as possible. Hopping was performed at 2.2 Hz on a force plate. After each of four treatment conditions (no stretch, 30 s stretch, multiple (4 × ) 30 s stretch, and dynamic stretch), subjects completed three × 30 s bouts (2 min rest periods) of hopping, in a counterbalanced crossover design. Stretches were performed on: gluteals, hamstrings, quadriceps and calves. Spring-mass leg stiffness was calculated as the ratio of peak vertical force to vertical displacement during ground contact. RESULTS: The results revealed that men displayed greater leg stiffness than women (mean difference: 6.04 kN m-1; 95% likely range: 1.94-10.13 kN m-1), and that MAX produced higher stiffness values than NAT (mean difference: 10.93 kN m-1; 95% likely range: 6.84-15.03 kN m-1). Although there were no significant effects of treatment (p = 0.85) or time (p = 0.54) on leg stiffness, there was a significant treatment × time interaction (p = 0.015). Nevertheless, post hoc analyses were unable to identify where those differences were. CONCLUSION: Relative to controls, the results of this study showed that brief static stretching or non task-specific dynamic stretching does not affect spring-mass leg stiffness during vertical bilateral hopping.


Assuntos
Perna (Membro)/fisiologia , Exercícios de Alongamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Movimento , Fatores Sexuais , Adulto Jovem
13.
Gait Posture ; 51: 268-274, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842295

RESUMO

Although normal gait is often considered symmetrical in healthy populations, differences between limbs during walking suggest that limbs may be used preferentially for braking or propulsion. The purpose of this study was to evaluate kinematic and kinetic variables, at both rested state and following a two-stage treadmill fatiguing run, for asymmetry between limbs. Kinematic (240Hz) and kinetic (960Hz) running data were collected bilaterally for 20 physically active individuals at both rested and fatigued states. Symmetry angles were calculated to quantify asymmetry magnitude at rested and fatigued states. Paired t-tests were used to evaluate differences between right and left limbs at rested and fatigued states, as well as rested and fatigued states symmetry angles. Variables that have been previously associated with the development of overuse injuries, such as knee internal rotation, knee stiffness, loading rate, and adduction free moment, were found to be significantly different between limbs at both rested and fatigued states. Significant differences in vertical stiffness were found, potentially indicating functional asymmetry during running. Symmetry angle was used to investigate changes in percentage of asymmetry at rested and fatigued states. Small (1-6%), but significant decreases in vertical stiffness, loading rate, and free moment symmetry angles indicate that these variables may become more symmetrical with fatigue. Knee internal rotation and knee stiffness became more asymmetrical with fatigue, increasing by 14% and 5.3%, respectively. The findings of the current study indicate that fatigue induced changes in gait may progress knee movement pattern asymmetry.


Assuntos
Marcha , Articulação do Joelho/fisiopatologia , Extremidade Inferior/fisiopatologia , Fadiga Muscular , Corrida , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Valores de Referência , Adulto Jovem
14.
Gait Posture ; 44: 204-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27004659

RESUMO

INTRODUCTION: This study aimed to determine whether real-time augmented feedback influenced performance of single-leg hopping to volitional exhaustion. METHODS: Twenty-seven healthy, male participants performed single-leg hopping (2.2 Hz) with (visual and tactile feedback for a target hop height) or without feedback on a force plate. Repeated measures ANOVA were used to determine differences in vertical stiffness (k), duration of flight (tf) and loading (tl) and vertical height displacement during flight (zf) and loading (zl). A Friedman 2-way ANOVA was performed to compare the percentage of trials between conditions that were maintained at 2.2 Hz ± 5%. Correlations were performed to determine if the effects were similar when providing tactile or visual feedback synchronously with the audible cue. RESULTS: Augmented feedback resulted in maintenance of the tf, zf and zl between the start and end of the trials compared to hopping with no feedback (p<0.01). With or without feedback there was no change in tl and k from start to end. Without feedback, 21 of 27 participants maintained >70% of total hops at 2.2 ± 5% Hz and this was significantly lower (p=0.01) with tactile (13/27) and visual (15/27) feedback. There was a strong correlation between tactile and visual feedback for duration of hopping cycle (Spearman's r=0.74, p ≤ 0.01). CONCLUSION: Feedback was detrimental to being able to maintain hopping cadence in some participants while other participants were able to achieve the cadence and target hop height. This indicates variability in the ability to use real-time augmented feedback effectively.


Assuntos
Exercício Físico/fisiologia , Fadiga/fisiopatologia , Retroalimentação Sensorial/fisiologia , Extremidade Inferior/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Sistemas Computacionais , Exercício Físico/psicologia , Fadiga/psicologia , Voluntários Saudáveis , Humanos , Masculino , Suporte de Carga , Adulto Jovem
15.
J Sport Health Sci ; 5(4): 476-483, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30356566

RESUMO

BACKGROUND: Stiffness is commonly assessed in relation to injury and athletic performance. The purpose of this research was to compare the validity and reliability of 3 in vivo methods of stiffness assessment using 1 cohort of participants. METHODS: To determine inter-day reliability, 15 female netballers were assessed for stiffness twice within 1 week using unilateral hopping (vertical stiffness), free oscillations of the calf, and myometry of various muscles of the triceps surae. To establish convergent construct validity, stiffness was compared to static and dynamic strength measurements. RESULTS: Test-retest stiffness results revealed that vertical stiffness produced moderate to high reliability results and myometry presented moderate to very high reliability. In contrast, the free oscillation technique displayed low to moderate reliability. Vertical stiffness demonstrated a significant correlation with rate of force development during a squat jump, whilst myometer stiffness measurements from 3 sites in the lower limb revealed significant correlations with isometric rate of force development. Further, significant negative correlations were evident between the eccentric utilisation ratio and various myometer stiffness results. No relationships were established between the free oscillation technique and any of the performance measurements. CONCLUSION: These results suggest that vertical stiffness and myometry are valid and reliable methods for assessing stiffness.

16.
Artigo em Inglês | MEDLINE | ID: mdl-25908990

RESUMO

BACKGROUND: Compression garments (CG) are commonly used by athletes to improve motor performance and recovery during or following exercise. Numerous studies have investigated the effect of CG on physiological and physical parameters with variable results as to their efficacy. A possible effect of commercially available CG may be to induce a change in leg mechanical characteristics during repetitive tasks to fatigue. This investigation determined the effect of CG on performance and vertical stiffness during single-leg-hopping to exhaustion. METHODS: Thirty-eight healthy, male participants, mean (SD) 22.1 (2.8) years of age performed single-leg hopping at 2.2 Hz to volitional exhaustion with a CG, without CG and with a sham. Differences in total duration of hopping (1-way repeated ANOVA) and dependant variables for the start and end periods (2-way repeated ANOVA) including duration of flight (tf), loading (tl) and contact (tc) phases, vertical height displacement during flight (zf) and loading (zl) phases, normalised peak vertical ground reaction force (FzN) and normalised vertical stiffness (k N), were determined. Bonferroni correction was performed to reduce the risk of type 1 error. RESULTS: There was no significant difference (p = 0.73) in the total duration of hopping between conditions (CG (mean (SD)) 89.6 (36.3) s; without CG 88.5 (27.5) s; sham 91.3 (27.7) s). There were no significant differences between conditions for spatiotemporal or kinetic characteristics (p > 0.05). From the start to the end periods there was no significant difference in tl (p = 0.15), significant decrease in tf (p < 0.001), zf and zl (p < 0.001) and increase in tc (p < 0.001). There was also a significant increase in k N from start to end periods (p < 0.01) ranging from 9.6 to 14.2%. CONCLUSIONS: This study demonstrates that commercially available CG did not induce a change in spatiotemporal or vertical stiffness during a fatiguing task. The finding that vertical stiffness increased towards the end of the task, while hopping frequency and duration of loading were maintained, may indicate that there was an alteration to the motor control strategy as fatigue approached. TRIAL REGISTRATION: Current Controlled Trials ACTRN12615000240549. Registered 17 March 2015.

17.
Hum Mov Sci ; 40: 273-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25625812

RESUMO

Biomechanical findings show that running is asymmetric in many kinetic properties. Running stiffness is a vital kinetic property of yet unknown pattern of lateralization. The aim of this study was to examine the degree and variability of lower limb dominance specific asymmetry of running in terms of leg stiffness, vertical stiffness, contact time, flight time, maximal ground reaction force during contact, vertical displacement of the center of mass, and change in leg length. Leg and vertical stiffness was estimated by the sine-wave method in 22 young males during treadmill running at 4.44 m/s. Lower limb dominance was determined by the triple-jump test. Asymmetry was expressed as dominant - non-dominant, and indexed by the absolute asymmetry index. Significant asymmetry was found only in flight time (3.98%) and in maximal ground reaction force (1.75%). The absolute asymmetry index ranged from 1.8% to 6.4%, showed high variation between subjects (0-31.6%), and differentiated among the 7 analyzed variables. Leg and vertical stiffness in treadmill running of moderate pace (4.44 m/s) should be considered symmetric.


Assuntos
Teste de Esforço , Lateralidade Funcional/fisiologia , Perna (Membro)/fisiologia , Corrida/fisiologia , Adulto , Algoritmos , Fenômenos Biomecânicos , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
18.
J Electromyogr Kinesiol ; 24(5): 704-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25022199

RESUMO

The aim of the study presented in this paper was to establish if a relationship existed between lower limb muscle pre-activation strategies and vertical stiffness (Kvert). Participants from a professional rugby union club all performed a multidirectional hopping task on a force platform which measured Kvert. Muscle activity was concurrently measured for the gluteus maximus, vastus lateralis, vastus medialis, biceps femoris, semimembranosus, and medial gastrocnemius using electromyography and the activity of those muscles in the 100ms prior to foot contact (pre-activation) was analysed. Moderate to strong positive relationships were typically seen for Kvert and muscle pre-activation for each muscle when normalized to maximum voluntary contraction. Pre-activation cocontraction of the muscles surrounding the knee joint also showed a typically moderate relationship with Kvert and peak muscle activation of antagonist muscles at the knee joint were typically similar. Results suggest that muscle pre-activation strategies play a role in modulating Kvert for change of direction manoeuvre.


Assuntos
Eletromiografia/métodos , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Atletas , Estudos Transversais , Humanos , Masculino , Movimento , Músculo Quadríceps/fisiologia , Esportes , Adulto Jovem
19.
Appl Physiol Nutr Metab ; 39(10): 1144-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25007238

RESUMO

Greater levels of lower-body stiffness have been associated with improved outcomes for a number of physical performance variables involving rapid stretch-shorten cycles. The aim of this study was to investigate the relationship between several measures of lower-body stiffness and physical performance variables typically evident during team sports in female athletes. Eighteen female athletes were assessed for quasi-static stiffness (myometry) for several isolated muscles in lying and standing positions. The muscles included the medial gastrocnemius (MedGast), lateral gastrocnemius, soleus, and Achilles tendon. Dynamic stiffness during unilateral hopping was also assessed. Participants were separated into relatively stiff and compliant groups for each variable. A number of significant differences in performance were evident between stiff and compliant subjects. When considering the quasi-static stiffness of the MedGast in lying and standing positions, relatively stiff participants recorded significantly superior results during agility, bounding, sprinting, and jumping activities. Stiffness as assessed by hopping did not discriminate between performance ability in any test. Relationships highlighted by MedGast results were supported by further significant differences in eccentric utilisation ratio and drop jump results between stiff and compliant groups for the lateral gastrocnemius and soleus in lying and standing positions. Higher levels of lower-body stiffness appear to be advantageous for females when performing rapid and (or) repeated stretch-shorten cycle movements, including sprinting, bounding, and jumping. Further, the stiffness of the MedGast is of particular importance during the performance of these activities. It is important for practitioners working with athletes in sports that rely upon these activities for success to consider stiffness assessment and modification.


Assuntos
Desempenho Atlético/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Estudos Transversais , Feminino , Humanos , Adulto Jovem
20.
Hum Mov Sci ; 33: 263-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290613

RESUMO

Leg stiffness is a predictor of athletic performance and injury and typically evaluated during bilateral hopping. The contribution of each limb to bilateral leg stiffness, however, is not well understood. This study investigated leg stiffness during unilateral and bilateral hopping to address the following research questions: (1) does the magnitude and variability of leg stiffness differ between dominant and non-dominant legs? (2) Does unilateral leg stiffness differ from bilateral leg stiffness? and (3) Is bilateral leg stiffness determined by unilateral leg stiffness? Thirty-two physically active males performed repeated hopping tests on a force platform for each of the three conditions: bilateral hopping, unilateral hopping on the dominant leg, and unilateral hopping on the non-dominant leg. Leg stiffness was estimated as the ratio of the peak vertical force and the maximum displacement using a simple 1-D mass-spring model. Neither the magnitude nor variability of leg stiffness differed between dominant and non-dominant limbs. Unilateral leg stiffness was 24% lower than bilateral stiffness and showed less variability between consecutive hops and subjects. Unilateral leg stiffness explained 76% of the variance in bilateral leg stiffness. We conclude that leg stiffness estimates during unilateral hopping are preferable for intervention studies because of their low variability.


Assuntos
Desempenho Atlético , Lateralidade Funcional , Contração Isométrica , Destreza Motora , Equilíbrio Postural , Suporte de Carga , Adolescente , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Força Muscular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA