Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Med Virol ; 96(7): e29802, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023095

RESUMO

Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.


Assuntos
Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Metagenômica , Viroma , Humanos , Síndrome do Intestino Irritável/virologia , Síndrome do Intestino Irritável/microbiologia , Microbioma Gastrointestinal/genética , Fezes/virologia , Fezes/microbiologia , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma
2.
ISME Commun ; 4(1): ycae084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39021441

RESUMO

Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.

3.
mSystems ; : e0075324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940524

RESUMO

Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (Caudoviricetes), giant viruses (Nucleocytoviricota, or NCLDV), and RNA viruses (Orthornavirae). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.IMPORTANCEAs seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems.

4.
BMC Genomics ; 25(1): 629, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914944

RESUMO

BACKGROUND: Virome studies on birds, including chickens are relatively scarce, particularly from the African continent. Despite the continuous evolution of RNA viruses and severe losses recorded in poultry from seasonal viral outbreaks, the information on RNA virome composition is even scantier as a result of their highly unstable nature, genetic diversity, and difficulties associated with characterization. Also, information on factors that may modulate the occurrence of some viruses in birds is limited, particularly for domesticated birds. Viral metagenomics through advancements in sequencing technologies, has enabled the characterization of the entire virome of diverse host species using various samples. METHODS: The complex RNA viral constituents present in 27 faecal samples of asymptomatic chickens from a South African farm collected at 3-time points from two independent seasons were determined, and the impact of the chicken's age and collection season on viral abundance and diversity was further investigated. The study utilized the non-invasive faecal sampling method, mRNA viral targeted enrichment steps, a whole transcriptome amplification strategy, Illumina sequencing, and bioinformatics tools. RESULTS: The results obtained revealed a total of 48 viral species spanning across 11 orders, 15 families and 21 genera. Viral RNA families such as Coronaviridae, Picornaviridae, Reoviridae, Astroviridae, Caliciviridae, Picorbirnaviridae and Retroviridae were abundant, among which picornaviruses, demonstrated a 100% prevalence across the three age groups (2, 4 and 7 weeks) and two seasons (summer and winter) of the 27 faecal samples investigated. A further probe into the extent of variation between the different chicken groups investigated indicated that viral diversity and abundance were significantly influenced by age (P = 0.01099) and season (P = 0.00099) between chicken groups, while there was no effect on viral shedding within samples in a group (alpha diversity) for age (P = 0.146) and season (P = 0.242). CONCLUSION: The presence of an exceedingly varied chicken RNA virome, encompassing avian, mammalian, fungal, and dietary-associated viruses, underscores the complexities inherent in comprehending the causation, dynamics, and interspecies transmission of RNA viruses within the investigated chicken population. Hence, chickens, even in the absence of discernible symptoms, can harbour viruses that may exhibit opportunistic, commensal, or pathogenic characteristics.


Assuntos
Galinhas , Fezes , Metagenômica , RNA Viral , Viroma , Animais , Galinhas/virologia , África do Sul/epidemiologia , Fezes/virologia , Viroma/genética , Metagenômica/métodos , RNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Fazendas , Metagenoma , Estações do Ano
6.
Virus Evol ; 10(1): veae034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859985

RESUMO

Seasonal influenza virus predominantly evolves through antigenic drift, marked by the accumulation of mutations at antigenic sites. Because of antigenic drift, influenza vaccines are frequently updated, though their efficacy may still be limited due to strain mismatches. Despite the high levels of viral diversity observed across populations, most human studies reveal limited intrahost diversity, leaving the origin of population-level viral diversity unclear. Previous studies show host characteristics, such as immunity, might affect within-host viral evolution. Here we investigate influenza A viral diversity in children aged between 6 months and 18 years. Influenza virus evolution in children is less well characterized than in adults, yet may be associated with higher levels of viral diversity given the lower level of pre-existing immunity and longer durations of infection in children. We obtained influenza isolates from banked influenza A-positive nasopharyngeal swabs collected at the Children's Hospital of Philadelphia during the 2017-18 influenza season. Using next-generation sequencing, we evaluated the population of influenza viruses present in each sample. We characterized within-host viral diversity using the number and frequency of intrahost single-nucleotide variants (iSNVs) detected in each sample. We related viral diversity to clinical metadata, including subjects' age, vaccination status, and comorbid conditions, as well as sample metadata such as virus strain and cycle threshold. Consistent with previous studies, most samples contained low levels of diversity with no clear association between the subjects' age, vaccine status, or health status. Further, there was no enrichment of iSNVs near known antigenic sites. Taken together, these findings are consistent with previous observations that the majority of intrahost influenza virus infection is characterized by low viral diversity without evidence of diversifying selection.

7.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872164

RESUMO

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Assuntos
Artrite Gotosa , Microbioma Gastrointestinal , Osteoartrite , Viroma , Humanos , Artrite Gotosa/virologia , Artrite Gotosa/microbiologia , Masculino , Osteoartrite/virologia , Osteoartrite/microbiologia , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Idoso , Metagenômica , Fezes/virologia , Fezes/microbiologia
8.
ISME Commun ; 4(1): ycae065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38800127

RESUMO

Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.

9.
Microbiol Resour Announc ; 13(6): e0000524, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38647278

RESUMO

The role of viral diversity in the pathogenesis of BK polyomavirus (BKPyV)-associated disease is poorly understood. Here, we report near full-length BKPyV genome sequences from two allogeneic hematopoietic cell transplant recipients infected with BKPyV genotype II, which is uncommon in the USA.

10.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675938

RESUMO

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Assuntos
Micovírus , Filogenia , Viroma , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Genoma Viral , China , Trametes/genética , Trametes/classificação , Trametes/virologia
11.
Virol J ; 21(1): 86, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622686

RESUMO

BACKGROUND: Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS: An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS: We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.


Assuntos
Coinfecção , Nanismo , Vírus de Plantas , Vírus de RNA , Humanos , Viroma , Ecossistema , Cnidium/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de Plantas/genética , DNA , Filogenia
12.
ISME Commun ; 4(1): ycae017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38481578

RESUMO

Recent metagenomic advancements have offered unprecedented insights into soil viral ecology. However, it remains a challenge to select the suitable metagenomic method for investigating soil viruses under different environmental conditions. Here, we assessed the performance of viral size-fraction metagenomes (viromes) and total metagenomes in capturing viral diversity from hypersulfidic soils with neutral pH and sulfuric soils with pH <3.3. Viromes effectively enhanced the sequencing coverage of viral genomes in both soil types. Viomes of hypersulfidic soils outperformed total metagenomes by recovering a significantly higher number of viral operational taxonomic units (vOTUs). However, total metagenomes of sulfuric soils recovered ~4.5 times more vOTUs than viromes on average. Altogether, our findings suggest that the choice between viromes and total metagenomes for studying soil viruses should be carefully considered based on the specific environmental conditions.

13.
Microbes Infect ; 26(4): 105331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537769

RESUMO

Bats are important mammal reservoirs of zoonotic pathogens. However, due to research limitations involving species, locations, pathogens, or sample types, the full diversity of viruses in bats remains to be discovered. We used next-generation sequencing technology to characterize the mammalian virome and analyze the phylogenetic evolution and diversity of mammalian viruses carried by bats from Haikou City and Tunchang County in Hainan Province, China. We collected 200 pharyngeal swab and anal swab samples from Rhinolophus affinis, combining them into nine pools based on the sample type and collection location. We subjected the samples to next-generation sequencing and conducted bioinformatics analysis. All samples were screened via specific PCR and phylogenetic analysis. The diverse viral reads, closely related to mammals, were assigned into 17 viral families. We discovered many novel bat viruses and identified some closely related to known human/animal pathogens. In the current study, 6 complete genomes and 2 partial genomic sequences of 6 viral families and 8 viral genera have been amplified, among which 5 strains are suggested to be new virus species. These included coronavirus, pestivirus, bastrovirus, bocavirus, papillomavirus, parvovirus, and paramyxovirus. The primary finding is that a SADS-related CoV and a HoBi-like pestivirus identified in R. affinis in Hainan Province could be pathogenic to livestock. This study expands our understanding of bats as a virus reservoir, providing a basis for further research on the transmission of viruses from bats to humans.


Assuntos
Quirópteros , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Viroma , Vírus , Quirópteros/virologia , Animais , China/epidemiologia , Viroma/genética , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Biologia Computacional/métodos
14.
mSphere ; 9(4): e0067623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38506520

RESUMO

Preeclampsia (PE), a pregnancy-specific syndrome, has been associated with the gut bacteriome. Here, to investigate the impact of the gut virome on the development of PE, we identified over 8,000 nonredundant viruses from the fecal metagenomes of 40 early-onset PE and 37 healthy pregnant women and profiled their abundances. Comparison and correlation analysis showed that PE-enriched viruses frequently connected to Blautia species enriched in PE. By contrast, bacteria linked to PE-depleted viruses were often the Bacteroidaceae members such as Bacteroides spp., Phocaeicola spp., Parabacteroides spp., and Alistipes shahii. In terms of viral function, PE-depleted viruses had auxiliary metabolic genes that participated in the metabolism of simple and complex polysaccharides, sulfur metabolism, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis, while PE-enriched viruses had a gene encoding cyclic pyranopterin monophosphate synthase, which seemed to be special, that participates in the biosynthesis of the molybdenum cofactor. Furthermore, the classification model based on gut viral signatures was developed to discriminate PE patients from healthy controls and showed an area under the receiver operating characteristic curve of 0.922 that was better than that of the bacterium-based model. This study opens up new avenues for further research, providing valuable insights into the PE gut virome and offering potential directions for future mechanistic and therapeutic investigations, with the ultimate goal of improving the diagnosis and management of PE.IMPORTANCEThe importance of this study lies in its exploration of the previously overlooked but potentially critical role of the gut virome in preeclampsia (PE). While the association between PE and the gut bacteriome has been recognized, this research takes a pioneering step into understanding how the gut virome, represented by over 8,000 nonredundant viruses, contributes to this condition. The findings reveal intriguing connections between PE-enriched viruses and specific gut bacteria, such as the prevalence of Blautia species in individuals with PE, contrasting with bacteria linked to PE-depleted viruses, including members of the Bacteroidaceae family. These viral interactions and associations provide a deeper understanding of the complex dynamics at play in PE.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Metagenômica , Pré-Eclâmpsia , Viroma , Humanos , Feminino , Pré-Eclâmpsia/virologia , Pré-Eclâmpsia/microbiologia , Gravidez , Microbioma Gastrointestinal/genética , Viroma/genética , Adulto , Fezes/virologia , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Metagenoma
15.
J Evol Biol ; 37(4): 371-382, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38386697

RESUMO

Viruses that infect bacteria, known as bacteriophages or phages, are the most prevalent entities on Earth. Their genetic diversity in nature is well documented, and members of divergent lineages can be found sharing the same ecological niche. This viral diversity can be influenced by a number of factors, including productivity, spatial structuring of the environment, and host-range trade-offs. Rapid evolution is also known to promote diversity by buffering ecological systems from extinction. There is, however, little known about the impact of coevolution on the maintenance of viral diversity within a microbial community. To address this, we developed a 4 species experimental system where two bacterial hosts, a generalist and a specialist phage, coevolved in a spatially homogenous environment over time. We observed the persistence of both viruses if the resource availability was sufficiently high. This coexistence occurred in the absence of any detectable host-range trade-offs that are costly for generalists and thus known to promote viral diversity. However, the coexistence was lost if two bacteria were not permitted to evolve alongside the phages or if two phages coevolved with a single bacterial host. Our findings indicate that a host's resistance response in mixed-species communities plays a significant role in maintaining viral diversity in the environment.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Especificidade de Hospedeiro , Bactérias/genética
16.
Sci China Life Sci ; 67(1): 175-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946067

RESUMO

Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.


Assuntos
Vírus de Insetos , Oryza , Vírus de Plantas , Vírus de RNA , Animais , Oryza/genética , Invertebrados , Vírus de RNA/genética , Insetos , Vírus de Insetos/genética , Vírus de Plantas/genética , Variação Genética , Filogenia , Genoma Viral/genética
17.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076862

RESUMO

The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.

18.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069344

RESUMO

Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates).


Assuntos
Gastrópodes , Vírus de RNA , Vírus , Animais , Gastrópodes/genética , Ecossistema , Vírus/genética , Lagos , Vírus de RNA/genética , Genoma Viral , RNA , Filogenia
19.
Viruses ; 15(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38005817

RESUMO

This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection.


Assuntos
Infecções por Citomegalovirus , Vírus de Plantas , Solanum lycopersicum , Transcriptoma , Frutas , Filogenia , Viroma , Vírus de Plantas/genética , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA