Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
PeerJ ; 12: e18211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391825

RESUMO

Background: Hibiscus mutabilis L. is a popular regional characteristic plant in China, cultivated for its attractive flower colors, extended bloom time, and medicinal properties. To enhance molecular breeding and gene function studies, we conducted transcriptome analysis and identified valuable genes in previous research. Nonetheless, the current inefficient and labor-intensive transformation techniques have hindered their applications. Virus-induced gene silencing (VIGS) provides a precise and effective strategy for post-transcriptional down-regulation of endogenous gene expression. Methods: We investigated the performance of tobacco rattle virus (TRV) as a tool for targeting and silencing the gene encoding the protein involved in chloroplast development, cloroplastos alterados 1 (altered chloroplast; CLA1), of H. mutabilis through Agrobacterium tumefaciens-mediated infiltration. Results: By effectively suppressing the CLA1 gene associated with chloroplast development in H. mutabilis via the TRV-VIGS system, we have illustrated the inaugural implementation of VIGS in this species. Quantitative RT-PCR proved that HmCLA1 expression in agro-infiltrated plants was lower than in the mock-infiltrated (mock) and the control (CK) plants. Phenotypic observations corroborated the albino phenotype in leaves following successful HmCLA1 silencing. Conclusions: Our study showcases TRV-VIGS as a potential gene silencing tool for H. mutabilis, facilitating functional genomics studies and molecular breeding efforts in this species.


Assuntos
Inativação Gênica , Hibiscus , Vírus de Plantas , Hibiscus/virologia , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas , Cloroplastos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 879, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358692

RESUMO

BACKGROUND: Tomato leaf curl New Delhi virus (ToLCNDV) (family Geminiviridae, genus Begomovirus) is a significant threat to cucumber (Cucumis sativus) production in many regions. Previous studies have reported the genetic mapping of loci related to ToLCNDV resistance, but no resistance genes have been identified. RESULTS: We conducted map-based cloning of the ToLCNDV resistance gene in cucumber accession No.44. Agroinfiltration and graft-inoculation analyses confirmed the resistance of No.44 to ToLCNDV isolates from the Mediterranean and Asian countries. Initial mapping involving two rounds of phenotyping with two independent F2 populations generated by crossing the begomovirus-susceptible cultivar SHF and No.44 consistently detected major quantitative trait loci (QTLs) on chromosomes 1 and 2 that confer resistance to ToLCNDV. Fine-mapping of Cy-1, the dominant QTL on chromosome 1, using F3 populations narrowed the candidate region to a 209-kb genomic segment harboring 24 predicted genes. Among these genes, DFDGD-class RNA-dependent RNA polymerase (CsRDR3), an ortholog of Ty-1/Ty-3 of tomato and Pepy-2 of capsicum, was found to be a strong candidate conferring ToLCNDV resistance. The CsRDR3 sequence of No.44 contained multiple amino acid substitutions; the promoter region of CsRDR3 in No.44 had a large deletion; and the CsRDR3 transcript levels were greater in No.44 than in SHF. Virus-induced gene silencing (VIGS) of CsRDR3 using two chromosome segment substitution lines harboring chromosome 1 segments derived from No.44 compromised resistance to ToLCNDV. CONCLUSIONS: Forward and reverse genetic approaches identified CsRDR3, which encodes a DFDGD-class RNA-dependent RNA polymerase, as the gene responsible for ToLCNDV resistance at the major QTL Cy-1 on chromosome 1 in cucumber. Marker-assisted breeding of ToLCNDV resistance in cucumber will be expedited by using No.44 and the DNA markers developed in this study.


Assuntos
Begomovirus , Cucumis sativus , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , RNA Polimerase Dependente de RNA , Cucumis sativus/genética , Cucumis sativus/virologia , Cucumis sativus/enzimologia , Begomovirus/fisiologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Resistência à Doença/genética , Mapeamento Cromossômico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Cromossomos de Plantas/genética
3.
Mol Plant Pathol ; 25(10): e70011, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39363756

RESUMO

Fusarium fungi are a pervasive threat to global agricultural productivity. They cause a spectrum of plant diseases that result in significant yield losses and threaten food safety by producing mycotoxins that are harmful to human and animal health. In recent years, the exploitation of the RNA interference (RNAi) mechanism has emerged as a promising avenue for the control of Fusarium-induced diseases, providing both a mechanistic understanding of Fusarium gene function and a potential strategy for environmentally sustainable disease management. However, despite significant progress in elucidating the presence and function of the RNAi pathway in different Fusarium species, a comprehensive understanding of its individual protein components and underlying silencing mechanisms remains elusive. Accordingly, while a considerable number of RNAi-based approaches to Fusarium control have been developed and many reports of RNAi applications in Fusarium control under laboratory conditions have been published, the applicability of this knowledge in agronomic settings remains an open question, and few convincing data on RNAi-based disease control under field conditions have been published. This review aims to consolidate the current knowledge on the role of RNAi in Fusarium disease control by evaluating current research and highlighting important avenues for future investigation.


Assuntos
Fusarium , Doenças das Plantas , Interferência de RNA , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
4.
J Agric Food Chem ; 72(39): 21935-21945, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311423

RESUMO

Maize chlorotic mottle virus (MCMV) is one of the main viruses causing significant losses in maize. N6-methyladenosine (m6A) RNA modification has been proven to play important regulatory roles in plant development and stress response. In this study, we found that MCMV infection significantly up-regulated the m6A level in maize, and methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed to investigate the distribution of m6A modified peaks and gene expression patterns in MCMV-infected maize plants. The results showed that 1325 differentially methylated genes (DMGs) and 47 differentially methylated and expressed genes (DMEGs) were identified and analyzed. Moreover, the results of virus-induced gene silencing (VIGS) assays showed that ZmECT18 and ZmGST31 were required for MCMV infection, while silencing of ZmMTC, ZmSCI1 or ZmTIP1 significantly promoted MCMV infection in maize. Our findings provided novel insights into the regulatory roles of m6A modification in maize response to MCMV infection.


Assuntos
Adenosina , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/virologia , Zea mays/imunologia , Zea mays/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Resistência à Doença/genética , Metilação , RNA de Plantas/genética , RNA de Plantas/metabolismo , Tombusviridae
5.
Plants (Basel) ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339626

RESUMO

Tomato fruit ripening is an elaborate genetic trait correlating with significant changes at physiological and biochemical levels. Sugar metabolism plays an important role in this highly orchestrated process and ultimately determines the quality and nutritional value of fruit. However, the mode of molecular regulation is not well understood. Galactinoal-sucrose galactosyltransferase (GSGT), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), can transfer the galactose unit from 1-α-D-galactosyl-myo-inositol to sucrose and yield raffinose, or catalyze the reverse reaction. In the present study, the expression of SlGSGT2 was decreased by Potato Virus X (PVX)-mediated gene silencing, which led to an unripe phenotype in tomato fruit. The physiological and biochemical changes induced by SlGSGT2 silencing suggested that the process of fruit ripening was delayed as well. SlGSGT2 silencing also led to significant changes in gene expression levels associated with ethylene production, pigment accumulation, and ripening-associated transcription factors (TFs). In addition, the interaction between SlGSGT2 and SlSPL-CNR indicated a possible regulatory mechanism via ripening-related TFs. These findings would contribute to illustrating the biological functions of GSGT2 in tomato fruit ripening and quality forming.

6.
Plants (Basel) ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273906

RESUMO

The significant reduction in cassava (Manihot esculenta Crantz) yields attributed to cassava bacterial blight (CBB) constitutes an urgent matter demanding prompt attention. The current study centered on the MebHLH149 transcription factor, which is acknowledged to be reactive to CBB and exhibits augmented expression levels, as indicated by laboratory transcriptome data. Our exploration, encompassing Xanthomonas phaseoli pv. manihotis strain CHN01 (Xpm CHN01) and hormone stress, disclosed that the MebHLH149 gene interacts with the pathogen at the early stage of infection. Furthermore, the MebHLH149 gene has been discovered to be responsive to the plant hormones abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), intimating a potential role in the signaling pathways mediated by these hormones. An analysis of the protein's subcellular localization suggested that MebHLH149 is predominantly located within the nucleus. Through virus-induced gene silencing (VIGS) in cassava, we discovered that MebHLH149-silenced plants manifested higher disease susceptibility, less ROS accumulation, and significantly larger leaf spot areas compared to control plants. The proteins MePRE5 and MePRE6, which are predicted to interact with MebHLH149, demonstrated complementary downregulation and upregulation patterns in response to silencing and overexpression of the MebHLH149 gene. This implies a potential interaction between MebHLH149 and these proteins. Both MePRE5 and MePRE6 genes are involved in the initial immune response to CBB. Notably, MebHLH149 was identified as a protein that physically interacts with MePRE5 and MePRE6. Based on these findings, it is hypothesized that the MebHLH149 gene likely functions as a positive regulator in the defense mechanisms of cassava against CBB.

7.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273197

RESUMO

Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.


Assuntos
Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melatonina , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/efeitos dos fármacos , Melatonina/farmacologia , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Flores/genética , Flores/metabolismo , Flores/efeitos dos fármacos , Transcriptoma , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Biol Macromol ; 279(Pt 1): 134846, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39179062

RESUMO

The production of cassava (Manihot esculenta Crantz) is constantly threatened by cassava bacterial blight (CBB), caused by Xanthomonas phaseoli pv. manihotis (Xpm). Zinc finger-homeodomain (ZF-HD) belongs to a family of homozygous heterotypic cassette genes widely implicated in various developmental and physiological processes in plants. Despite their importance, a comprehensive analysis of ZF-HD genes, particularly those involved in disease resistance, has not been performed for cassava. In the present study, we utilized bioinformatics methods to identify 21 ZF-HD genes distributed across 11 chromosomes of cassava genome, with the majority exhibiting gene structure without introns. Phylogenetic analysis categorized these genes into two major groups (MIF and ZHD) with five subgroups. We observed fourteen pairs of duplicated genes, suggesting that segmental duplication has likely facilitated the expansion of the cassava ZF-HD gene family. Comparative orthologous analyses between cassava and other plant species shed light on the evolutionary trajectory of this gene family. Promoter analyses revealed multiple hormone- and stress-related elements, indicative of a functional role in stress responses. Expression profiling through RNA-seq and quantitative real-time PCR (qRT-PCR) demonstrated that certain cassava ZF-HD genes are up-regulated in response to Xpm infection, suggesting their involvement in defense mechanisms. Notably, MeZHD7 gene was identified via virus induced gene silencing (VIGS) as potentially crucial in conferring resistance against CBB. Results from subcellular localization experiments indicated that MeZHD7 was localized in the nucleus. The Luciferase reporter assay demonstrated an interaction between MeZHD7 and MeMIF5. These findings may lay the foundation for further cloning and functional analyses of cassava ZF-HD genes, particularly those associated with pathogen resistance.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Manihot , Filogenia , Doenças das Plantas , Proteínas de Plantas , Manihot/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Xanthomonas/patogenicidade , Regiões Promotoras Genéticas/genética
9.
BMC Plant Biol ; 24(1): 739, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095699

RESUMO

BACKGROUND: The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS: A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION: A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Gossypium , Histona-Lisina N-Metiltransferase , Proteínas de Plantas , Gossypium/genética , Gossypium/enzimologia , Gossypium/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Genes de Plantas , Inativação Gênica
10.
Plants (Basel) ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124150

RESUMO

Drought stress significantly affects the growth, development, and yield of cotton, triggering the response of multiple genes. Among them, ascorbate peroxidase (APX) is one of the important antioxidant enzymes in the metabolism of reactive oxygen species in plants, and APX enhances the ability of plants to resist oxidation, thus increasing plant stress tolerance. Therefore, enhancing the activity of APX in cells is crucial to improving plant stress resistance. Previous studies have isolated differentially expressed proteins under drought stress (GhAPX7) in drought-resistant (KK1543) and drought-sensitive (XLZ26) plants. Thus, this study analyzed the expression patterns of GhAPX7 in different cotton tissues to verify the drought resistance function of GhAPX7 and explore its regulatory pathways. GhAPX7 had the highest expression in cotton leaves, which significantly increased under drought stress, suggesting that GhAPX7 is essential for improving antioxidant capacity and enzyme activities in cotton. GhAPX7 silencing indirectly affects pronounced leaf yellowing and wilting in drought-resistant and drought-sensitive plants under drought stress. Malondialdehyde (MDA) content was significantly increased and chlorophyll and proline content and APX enzyme activity were generally decreased in silenced plants compared to the control. This result indicates that GhAPX7 may improve drought resistance by influencing the contents of MDA, chlorophyll, proline, and APX enzyme activity through increased expression levels. Transcriptome analysis revealed that the drought-related differentially expressed genes between the control and treated groups enriched plant hormone signal transduction, MAPK signaling, and plant-pathogen interaction pathways. Therefore, the decreased expression of GhAPX7 significantly affects the expression levels of genes in these three pathways, reducing drought resistance in plants. This study provides insights into the molecular mechanisms of GhAPX7 and its role in drought resistance and lays a foundation for further research on the molecular mechanisms of response to drought stress in cotton.

11.
Pest Manag Sci ; 80(10): 4980-4992, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38843443

RESUMO

BACKGROUND: Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P450 expression associated with detoxification enzymes by RNA interference is known to increase susceptibility of D. citri to insecticides. However, dsRNA was previously introduced into psyllids by topical applications. The possible application of this technology for pest management will require effective field delivery of the dsRNA. Therefore, we evaluated a virus vector (Citrus tristeza virus; 'mild strain' T36) to deliver gene silencing directly to this sap-sucking insect via plant phloem. Citrus macrophylla plants inoculated with CTV expressing a truncated consensus sequence of CYP450 (CTV-tCYP450) constantly produced small interfering RNA in the plant phloem that targeted five cytochrome p540 (CYP450) genes in D. citri. RESULTS: Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP450 were subsequently more susceptible to imidacloprid, fenpropathrin, carbaryl, and chlorpyrifos than those reared on citrus infected with wildtype CTV or non-infected negative controls. Additionally, nymph survival and adult lifespan were significantly reduced when psyllids were reared on CTV-tCYP450 citrus plants compared with controls. Interestingly, similar results were obtained after one and two generations of rearing. Finally, field-collected psyllids from areas with known broad-spectrum insecticide resistance were rendered more susceptible to imidacloprid and fenpropathrin after feeding on CTV-tCYP450 citrus trees as compared with those reared on controls. CONCLUSION: The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.


Assuntos
Citrus , Sistema Enzimático do Citocromo P-450 , Inativação Gênica , Hemípteros , Resistência a Inseticidas , Inseticidas , Animais , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Hemípteros/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Closterovirus/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Nitrocompostos/farmacologia
12.
Plant Cell Rep ; 43(7): 170, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869848

RESUMO

KEY MESSAGE: The silencing of GhGASA14 and the identification of superior allelic variation in its coding region indicate that GhGASA14 may positively regulate flowering and the response to GA3. Gibberellic acid-stimulated Arabidopsis (GASA), a member of the gibberellin-regulated short amino acid family, has been extensively investigated in several plant species and found to be critical for plant growth and development. However, research on this topic in cotton has been limited. In this study, we identified 38 GhGASAs that were dispersed across 18 chromosomes in upland cotton, and all of these genes had a GASA core domain. Transcriptome expression patterns and qRT-PCR results revealed that GhGASA9 and GhGASA14 exhibited upregulated expression not only in the floral organs but also in the leaves of early-maturing cultivars. The two genes were functionally characterized by virus-induced gene silencing (VIGS), and the budding and flowering times after silencing the target genes were later than those of the control (TRV:00). Compared with that in the water-treated group (MOCK), the flowering period of the different fruiting branches in the GA3-treated group was more concentrated. Interestingly, allelic variation was detected in the coding sequence of GhGASA14 between early-maturing and late-maturing accessions, and the frequency of this favorable allele was greater in high-latitude cotton cultivars than in low-latitude ones. Additionally, a significant linear relationship was observed between the expression level of GhGASA14 and flowering time among the 12 upland cotton accessions. Taken together, these results indicated that GhGASA14 may positively regulate flowering time and respond to GA3. These findings could lead to the use of valuable genetic resources for breeding early-maturing cotton cultivars in the future.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiologia , Gossypium/efeitos dos fármacos , Flores/genética , Flores/efeitos dos fármacos , Flores/fisiologia , Flores/crescimento & desenvolvimento , Giberelinas/farmacologia , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Inativação Gênica
13.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
14.
Front Plant Sci ; 15: 1336726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708388

RESUMO

In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding-immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95-100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding-immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding-immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.

15.
Front Plant Sci ; 15: 1396902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756961

RESUMO

Pepper, which is a widely cultivated important vegetable, is sensitive to salt stress, and the continuous intensification of soil salinization has affected pepper production worldwide. However, genes confer to salt tolerance are rarely been cloned in pepper. Since the REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylase that plays a crucial regulatory role in plants in response to various abiotic stresses, including salt stress. We cloned a ROS1 gene in pepper, named CaROS1 (LOC107843637). Bioinformatic analysis showed that the CaROS1 protein contains the HhH-GPD glycosylase and RRM_DME domains. qRT-PCR analyses showed that the CaROS1 was highly expressed in young and mature fruits of pepper and rapidly induced by salt stress. Functional characterization of the CaROS1 was performed by gene silencing in pepper and overexpressing in tobacco, revealed that the CaROS1 positively regulates salt tolerance ability. More detailly, CaROS1-silenced pepper were more sensitive to salt stress, and their ROS levels, relative conductivity, and malondialdehyde content were significantly higher in leaves than those of the control plants. Besides, CaROS1-overexpressing tobacco plants were more tolerant to salt stress, with a higher relative water content, total chlorophyll content, and antioxidant enzyme activity in leaves compared to those of WT plants during salt stress. These results revealed the CaROS1 dose play a role in salt stress response, providing the theoretical basis for salt tolerance genetic engineering breeding in pepper.

16.
BMC Genomics ; 25(1): 513, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789947

RESUMO

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS: In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS: In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.


Assuntos
Aldeído Desidrogenase , Genoma de Planta , Gossypium , Família Multigênica , Filogenia , Gossypium/genética , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Inativação Gênica
17.
Virology ; 595: 110069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640788

RESUMO

Soybean mosaic virus (SMV) is a potyvirus found worldwide in soybean (Glycine max). GmCYB5-4 is a strong candidate interactor of P3. In this study, we comprehensively analyzed the GmCYB5 family in soybeans, including its distribution on chromosomes, promoter analysis, conserved motifs, phylogenetic analysis, and expression patterns. We cloned the full-length GmCYB5-4 and examined its interaction with P3 in yeast, which was later confirmed using bimolecular fluorescence complementation (BiFc). We silenced GmCYB5-4 using a bean pottle mosaic viris (BPMV) based system to generate SilCYB5-4 tissues, which surprisingly knocked down four isoforms of GmCYB5s for functional characterization. SilCYB5-4 plants were challenged with the SC3 strain to determine its involvement in SMV infection. Silencing GmCYB5-4 increased SMV accumulation, indicating that GmCYB5-4 inhibited SMV proliferation. However, further experiments are needed to elucidate the mechanism underlying the involvement of GmCYB5-4 in SMV infection.


Assuntos
Glycine max , Doenças das Plantas , Potyvirus , Potyvirus/genética , Potyvirus/fisiologia , Glycine max/virologia , Glycine max/metabolismo , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Replicação Viral , Interações Hospedeiro-Patógeno
18.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658148

RESUMO

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Assuntos
Resistência à Doença , Inativação Gênica , Glycine max , Doenças das Plantas , Glycine max/genética , Glycine max/imunologia , Glycine max/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Comovirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Xanthomonas , Espécies Reativas de Oxigênio/metabolismo
19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658149

RESUMO

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Assuntos
Autofagia , Comovirus , Resistência à Doença , Inativação Gênica , Glycine max , Doenças das Plantas , Glycine max/genética , Glycine max/microbiologia , Glycine max/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Autofagia/genética , Comovirus/genética , Senescência Vegetal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Plantas Geneticamente Modificadas/genética
20.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685255

RESUMO

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Assuntos
Cobre , Resistência à Doença , Nicotiana , Doenças das Plantas , Potyvirus , Nicotiana/virologia , Nicotiana/genética , Potyvirus/fisiologia , Cobre/farmacologia , Doenças das Plantas/virologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/virologia , Regulação da Expressão Gênica de Plantas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA