Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970675

RESUMO

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Escherichia coli O157 , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/imunologia , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Nanoestruturas/química , Eletrodos , Compostos Ferrosos/química , Anticorpos Imobilizados/imunologia , Metalocenos/química , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Peptídeos Antimicrobianos/química
2.
J Hazard Mater ; 476: 135117, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972206

RESUMO

Benzoyl peroxide (BPO), as a widely used organic peroxide, has attracted widespread attention from all sectors of society for its environmental hazards and potential risks to human health. Herein, we employed a Förster resonance energy transfer (FRET) strategy to construct a novel ratiometric fluorescent probe CY-DCI for BPO detection in food, zebrafish, and mice. Specifically, a hemicyanine fluorophore and a dicyanoisophorone fluorophore were connected with a piperazine group as donor and acceptor, respectively, and an olefinic unsaturated bond as the reaction site. CY-DCI has favorable selectivity and an excellent detection limit as low as 58.1 nM, and the recovery rates for real-sample detection ranged from 95.8 % to 104 %, with relative standard deviations (RSD) less than 2.58 %. To further improve its practicality, silica gel plates and test strips containing CY-DCI (0-50 µM) were developed for naked-eye detection of BPO with satisfactory results. Additionally, this novel probe was then applied for ratiometric imaging of living zebrafish and mice and showed high ratiometric imaging resolution in the green and red channels, thus demonstrating its practical application for BPO detection and toxicity early warning in food and biosystems.

3.
Food Chem ; 458: 140304, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38970961

RESUMO

Protecting human health and ensuring food security require the swift and accurate detection of sulfonamides (SAs) residues in foods. Herein, we proposed an Eu-postfunctionalized bimetallic porphyrin metal-organic framework (PCN-221(Zr/Ce)@Eu-DPA-H4btec) synthesized solvothermally for fluorescence sensing. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor demonstrated excellent stability and high selectivity to SAs, and the detection limits of sulfamethazine (SM2), sulfamerazine (SMR), and sulfamethoxydiazine (SMD) were as low as 56 nmol/L, 45 nmol/L, and 56 nmol/L, respectively. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor was successfully applied for the detection of SM2, SMR, and SMD in real pork and milk samples, with satisfactory recoveries (81.2-118.3%) and high precisions (RSDs <8.2, n = 3). Combining the optical properties of the nanohybrids, PCN-221(Zr/Ce)@Eu-DPA-H4btec integrated fluorescent hydrogels were innovatively prepared for visual sensing of SM2, SMR, and SMD. This study provides an uncomplicated and sensitive method for SAs detection in food matrices.

4.
Food Chem ; 459: 140339, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986206

RESUMO

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124791, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986257

RESUMO

On-site, robust, and quantitative detection of diclofenac (DCF) is highly significant in bioanalysis and quality control. Fluorescence-based metal-organic frameworks (MOFs) play a pivotal role in biochemical sensing, offering a versatile platform for detecting various biomolecules. However, conventional fluorescent MOF sensors often rely on lanthanide metals, which can pose challenges in terms of cost, accessibility, and environmental impact. Herein, an intrinsic blue fluorescent zinc-based metal-organic framework (FMOF-5) was prepared free from lanthanide metals. Coordination-induced emission as an effective strategy was followed wherein a non-fluorescent ligand is converted to a fluorescent one after insertion in a framework. Conventional fluorometry and smartphone-assisted visual methods were employed for the detection of DCF. The fluorescence emission of the FMOF-5 was effectively quenched upon the addition of the DCF, endowing it an "off" condition, which permits the construction of a calibration curve with a wide linear range of 30-670 µM and a detection limit of about 4.1 µM. Other analytical figures of merit, such as linearity, sensitivity, selectivity, accuracy, and precision were studied and calculated. Furthermore, the proposed sensor was successfully applied to quantify DCF in pharmaceutical tablets with reliable recovery and precision. Importantly, the elimination of lanthanide metals from the fluorescence detection system enhances its practicality and sustainability, making it a promising alternative for DCF detection in pharmaceutical analysis applications.

6.
Mikrochim Acta ; 191(8): 461, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990273

RESUMO

Three phenomena, namely coordination-induced emission (CIE), aggregation-induced emission (AIE), and inner filter effect (IFE), were incorporated into the design of a ratiometric and color tonality-based biosensor. Blue fluorescent Al-based metal-organic frameworks (FMIL-96) were prepared from non-emissive ligand and aluminum ions via CIE. Interestingly, the addition of tetracycline (TC) led to ratiometric detection and color tonality, as the blue emission at 380 nm was quenched (when excited at 350 nm) due to IFE, while the green-yellowish emission at 525 nm was enhanced due to AIE. Based on that, an ultra-sensitive visual-based color tonality mode with smartphone assistance was developed for detection of TC. The sensor exhibited a linear relationship within a broad range of 2.0 to 85.0 µM TC with a detection limit of 68.0 nM. TC in milk samples was quantified with high accuracy and precision. This integration of smartphone and visual fluorescence in solution is accurate, reliable, cost-effective, and time-saving, providing an alternative strategy for the semi-quantitative determination of TC on-site.

7.
Poult Sci ; 103(9): 103995, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38996740

RESUMO

Mycoplasma synoviae (MS) is an essential pathogenic mycoplasma in poultry worldwide, posing a serious threat to the poultry industry's health. Timely detection is imperative for early diagnosis, prevention, and control of MS infection. Current laboratory methods for MS detection are generally complicated, time-consuming, and require sophisticated equipment. Therefore, a simple and rapid method is urgently needed. This study developed a novel real-time fluorescence-based recombinase-aided amplification (RF-RAA) technique for detecting MS nucleic acids, enabling target gene amplification within 20 min at 39°C. The RF-RAA outcomes are interpretable in 2 modalities: real-time fluorescence monitoring employing a temperature-controlled fluorescence detector or direct visual inspection facilitated by a portable blue light transilluminator. This method exhibits robust specificity, demonstrating no cross-reactivity with various common poultry pathogens, and achieves high sensitivity, detecting as low as 10 copies/µL for the standard plasmid. Seventy-one clinical samples of chicken throat swabs were detected by RF-RAA and real-time fluorescence quantitative polymerase chain reaction (qPCR) methods. The diagnostic coincidence rates of qPCR with RF-RAA (fluorescence monitoring) and RF-RAA (visual observation) were determined to be 100% and 97.2% (69/71), respectively. In conclusion, the RF-RAA method developed in this study provides a rapid and visually observable approach for MS detection, offering a novel technique to diagnosing MS infection, especially in resource-limited settings.

8.
Sci Rep ; 14(1): 16156, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997337

RESUMO

Dermatophagoides farina (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus) are the prevalent kinds of house dust mites (HDMs). HDMs are common inhalant allergens that cause a range of allergic diseases, such as rhinitis, atopic dermatitis, and asthma. The epidemiology of these diseases is associated with exposure to mites. Therefore, in the present study, a method named multiplex loop-mediated isothermal amplification (LAMP) was developed to detect environmental dust mites. The multiplex LAMP assay allows amplification within a single tube and has an ITS plasmid detection limit as low as 40 fg/µL for both single dust mites and mixed dust mites (D. pteronyssinus and D. farinae), which is up to ten times more sensitive than classical PCR techniques. Furthermore, the multiplex LAMP method was applied to samples of single dust mites and clinical dust to confirm its validity. The multiplex LAMP assay exhibited higher sensitivity, simpler instrumentation, and visualization of test results, indicating that this method could be used as an alternative to traditional techniques for the detection of HDMs.


Assuntos
Dermatophagoides farinae , Dermatophagoides pteronyssinus , Técnicas de Amplificação de Ácido Nucleico , Animais , Dermatophagoides pteronyssinus/genética , Dermatophagoides farinae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
9.
Int J Biol Macromol ; 275(Pt 2): 133720, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38987000

RESUMO

Tick-borne encephalitis virus (TBEV), a zoonotic pathogen, can cause severe neurological complications and fatal outcomes in humans. Early diagnosis of TBEV infection is crucial for clinical practice. Although serological assays are frequently employed for detection, the lack of antibodies in the early stages of infection and the cross-reactivity of antibodies limit their efficacy. Conventional molecular diagnostic methods such as RT-qPCR can achieve early and accurate identification but require specialized instrumentation and professionals, hindering their application in resource-limited areas. Our study developed a rapid and visual TBEV molecular detection method by combining RT-recombinase-aided amplification, the CRISPR/Cas13a system, and lateral flow dipsticks. The diagnostic sensitivity of this method is 50 CFU/ml, with no cross-reactivity with a variety of viruses. The detection can be carried out within 1 h at a temperature between 37 and 42 °C, and the results can be visually determined without the need for complex instruments and professionals. Subsequently, this assay was used to analyze clinical samples from 15 patients suspected of TBEV infection and 10 healthy volunteers, and its sensitivity and specificity reached 100 %, which was consistent with the results of RT-qPCR. These results indicate that this new method can be a promising point-of-care test for the diagnosis of tick-borne encephalitis.

10.
Front Microbiol ; 15: 1390422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903797

RESUMO

Phytophthora sojae is a devastating plant pathogen that causes soybean Phytophthora root rot worldwide. Early on-site and accurate detection of the causal pathogen is critical for successful management. In this study, we have developed a novel and specific one-pot RPA/PCR-CRISPR/Cas12 assay for on-site detection (Cas-OPRAD) of Phytophthora root rot (P. sojae). Compared to the traditional RPA/PCR detection methods, the Cas-OPRAD assay has significant detection performance. The Cas-OPRAD platform has excellent specificity to distinguish 33 P. sojae from closely related oomycetes or fungal species. The PCR-Cas12a assay had a consistent detection limit of 100 pg. µL-1, while the RPA-Cas12a assay achieved a detection limit of 10 pg. µL-1. Furthermore, the Cas-OPRAD assay was equipped with a lateral flow assay for on-site diagnosis and enabled the visual detection of P. sojae on the infected field soybean samples. This assay provides a simple, efficient, rapid (<1 h), and visual detection platform for diagnosing Phytophthora root rot based on the one-pot CRISPR/Cas12a assay. Our work provides important methods for early and accurate on-site detection of Phytophthora root rot in the field or customs fields.

11.
Adv Mater ; : e2404392, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838201

RESUMO

It is highly desired to develop a visual sensing system for ultrasensitive detection of colorless diclofenac (DCF), yet with a significant challenge. Herein, a novel dye-based photosensitization sensing system has been successfully developed for detecting DCF for the first time, in which the used dye eosin Y (DeY) can strongly absorb visible light and then be decolorized obviously by transferring photogenerated electrons to g-C3N4 nanosheets (CN), while the built single-atomic Co─N2O2 sites on CN by boron-oxygen connection can competitively adsorb DCF to impede the photosensitization decoloration of DeY. This system exhibits a broad detection range from 8 ng L-1 to 2 mg L-1 with 535 nm light, an exceptionally low detection limit (3.5 ng L-1), and remarkable selectivity. Through the time-resolved, in situ technologies, and theoretical calculations, the decolorization of DeY is attributed to the disruption of DeY's conjugated structure caused by the triplet excited state electron transfer from DeY to CN, meanwhile, the adsorbed oxygen facilitates the charge transfer process. The preferential adsorption of DCF mainly depends on the strong interactions between the as-constructed single-atom Co and Cl in DCF. This study opens an innovative light-driven sensing system by combining dye and single-atom metal/nanomaterial for visually intuitive detection of environmental pollutants.

12.
Biosens Bioelectron ; 261: 116519, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917515

RESUMO

Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Ouro , Nanopartículas Metálicas , RNA Viral , SARS-CoV-2 , RNA Viral/análise , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Ouro/química , Nanopartículas Metálicas/química , COVID-19/virologia
13.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891961

RESUMO

Southern stem canker (SSC) of soybean, attributable to the fungal pathogen Diaporthe aspalathi, results in considerable losses of soybean in the field and has damaged production in several of the main soybean-producing countries worldwide. Early and precise identification of the causal pathogen is imperative for effective disease management. In this study, we performed an RPA-CRISPR/Cas12a, as well as LAMP, PCR and real-time PCR assays to verify and compare their sensitivity, specificity and simplicity and the practicality of the reactions. We screened crRNAs targeting a specific single-copy gene, and optimized the reagent concentrations, incubation temperatures and times for the conventional PCR, real-time PCR, LAMP, RPA and Cas12a cleavage stages for the detection of D. aspalathi. In comparison with the PCR-based assays, two thermostatic detection technologies, LAMP and RPA-CRISPR/Cas12a, led to higher specificity and sensitivity. The sensitivity of the LAMP assay could reach 0.01 ng µL-1 genomic DNA, and was 10 times more sensitive than real-time PCR (0.1 ng µL-1) and 100 times more sensitive than conventional PCR assay (1.0 ng µL-1); the reaction was completed within 1 h. The sensitivity of the RPA-CRISPR/Cas12a assay reached 0.1 ng µL-1 genomic DNA, and was 10 times more sensitive than conventional PCR (1.0 ng µL-1), with a 30 min reaction time. Furthermore, the feasibility of the two thermostatic methods was validated using infected soybean leaf and seeding samples. The rapid, visual one-pot detection assay developed could be operated by non-expert personnel without specialized equipment. This study provides a valuable diagnostic platform for the on-site detection of SSC or for use in resource-limited areas.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Glycine max , Sistemas CRISPR-Cas/genética , Glycine max/microbiologia , Glycine max/genética , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase/métodos
14.
Clin Neurophysiol ; 164: 30-39, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843758

RESUMO

OBJECTIVE: High frequency oscillations (HFOs) are a biomarker of the seizure onset zone (SOZ) and can be visually or automatically detected. In theory, one can optimize an automated algorithm's parameters to maximize SOZ localization accuracy; however, there is no consensus on whether or how this should be done. Therefore, we optimized an automated detector using visually identified HFOs and evaluated the impact on SOZ localization accuracy. METHODS: We detected HFOs in intracranial EEG from 20 patients with refractory epilepsy from two centers using (1) unoptimized automated detection, (2) visual identification, and (3) automated detection optimized to match visually detected HFOs. RESULTS: SOZ localization accuracy based on HFO rate was not significantly different between the three methods. Across patients, visually optimized detector settings varied, and no single set of settings produced universally accurate SOZ localization. Exploratory analysis suggests that, for many patients, detection settings exist that would improve SOZ localization. CONCLUSIONS: SOZ localization accuracy was similar for all three methods, was not improved by visually optimizing detector settings, and may benefit from patient-specific parameter optimization. SIGNIFICANCE: Visual HFO marking is laborious, and optimizing automated detection using visual markings does not improve localization accuracy. New patient-specific detector optimization methods are needed.


Assuntos
Epilepsia Resistente a Medicamentos , Humanos , Feminino , Masculino , Adulto , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Eletrocorticografia/métodos , Eletrocorticografia/normas , Convulsões/fisiopatologia , Convulsões/diagnóstico , Ondas Encefálicas/fisiologia , Algoritmos , Adulto Jovem , Adolescente , Epilepsia/fisiopatologia , Epilepsia/diagnóstico
15.
Mikrochim Acta ; 191(7): 377, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850342

RESUMO

A novel molecularly imprinted ratiometric fluorescent sensor CQDs@MIP/FITC@SiO2 for the detection of p-nitroaniline (p-NA) was constructed through the mixture of CQDs@MIP and FITC@SiO2 in the ratio of 1:1 (VCQDs@MIP:VFITC@SiO2). The polymers of CQDs@MIP and FITC@SiO2 were prepared by sol-gel method and reversed-phase microemulsion method, respectively. CQDs@MIP was used as the auxiliary response signal and FITC@SiO2 was used as the reference enhancement signal. The signal was measured at excitation/emission wavelengths of 365/438, 512 nm. The sensor showed good linearity in the concentration range 0.14-40.00 µM (R2 = 0.998) with a detection limit of 0.042 µM for p-NA. The color change of "blue-cyan-green" could be observed by the naked eye under 365 nm UV light, thus realizing the visual detection of p-NA. The sensor presented comparable results compared with high-performance liquid chromatography (HPLC) method for the detection of p-NA in hair dye paste and aqueous samples with recoveries of 96.8-103.7% and 95.8-104.4%, respectively. It was demonstrated that the constructed sensor possesses the advantages of simplicity, excellent selectivity, superior sensitivity, and outstanding stability.

16.
Food Chem ; 456: 140008, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38870816

RESUMO

Dual-enzyme co-embedded materials have shown high potential for achieving efficient detection due to the convenience of two-enzyme cascade reactions. Herein, we developed a dual-enzyme hybrid microsphere (HM) based biosensor to detect diamines (histamine was included for ease of description) in aquatic products. The HM was made from diamine oxidase, horseradish peroxidase, and copper phosphate through the biomineralization method. Under optimal conditions, the system displayed linear color response to histamine of different concentrations ranging from 0 to 200 µg/mL. The detection limit of histamine was 0.15 µg/mL, showing higher sensitivity than the two-step free enzyme assay. Moreover, the detection system exhibited good specificity to diamines. The method was used to detect diamines in commercial samples, and the results were compared with those measured by the high-performance liquid chromatography method. Overall, the proposed assay exhibited high potential in diamine quantification and was readily extended to other cascade enzymatic reaction-based detection strategies.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124566, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833890

RESUMO

Nitrite (NO2-) widely exists in our daily diet, and its excessive consumption can lead to detrimental effects on the human central nervous system and an elevated risk of cancer. The fluorescence probe method for the determination of nitrite has developed rapidly due to its simplicity, rapidity and sensitivity. Despite establishing various nitrite sensing platforms to ensure the safety of foods and drinking water, the simultaneous achievement of rapid, specific, affordable, visualizing, and on-site nitrite detection remains challenging. Here, we designed a novel fluorescent probe by using Rhodamine 800 as the fluorescent skeleton and 5-aminoindole as the specific reaction group to solve this problem. The probe shows a maximal fluorescence emission at 602 nm, thereby avoiding background emission interference when applied to food samples. Moreover, this unique probe exhibited excellent sensing capabilities for detecting nitrite. These included: a rapid response time within 3 min, a noticeable color change that the naked eye can observe, a low detection limit of 13.8 nM, and a remarkable selectivity and specificity to nitrite. Besides that, the probe can detect nitrite quantitatively in barreled drinking water, ham sausage, and pickles samples, with good recoveries ranging from 89.0 % to 105.8 %. More importantly, based on the probe fixation and signal processing technology, a portable and smart sensing platform was fabricated and made convenient and rapid analysis the content of NO2- in real samples possible. The results obtained in this work provide a new strategy for the design of high-performance nitrite probes and feasible technology for portable, rapid and visual detection of nitrite, and this probe holds the potential as a practical tool for alleviating concern regarding nitrite levels.


Assuntos
Corantes Fluorescentes , Indóis , Limite de Detecção , Nitritos , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Nitritos/análise , Indóis/química , Água Potável/análise , Humanos , Produtos da Carne/análise
18.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709346

RESUMO

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Assuntos
Corantes Fluorescentes , Urânio , Urânio/análise , Urânio/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Limite de Detecção , Materiais Biocompatíveis/química , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica , Compostos de Anilina/química , Compostos de Anilina/toxicidade , Piridinas/química
19.
Front Cell Infect Microbiol ; 14: 1391943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808061

RESUMO

Blastocystis spp. is a ubiquitous protozoon in the intestinal tract of human and many animals. Microscopic examination is the main method of clinical diagnosis for Blastocystis spp., which is prone to false negative. A simple and rapid diagnosis of Blastocystis spp. infection is an important step to prevent and control blastocystosis. Here, a recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay was developed for rapid visual detection of Blastocystis spp. DNA amplification could be performed within 18 min at 37°C. The minimum DNA detection limit was 1 pg/µL, and there was no cross-reactivity with 12 other non-target pathogens, which was consistent with the sensitivity of conventional PCR (cPCR). Furthermore, 56 fecal samples from the Third Affiliated Hospital of Xinxiang Medical University were tested using RPA and cPCR methods respectively, and the results were completely consistent. The results show that RPA-LFD method has high accuracy and visual results, which provides a new choice for the differential diagnosis and rapid field detection of Blastocystis spp.


Assuntos
Infecções por Blastocystis , Blastocystis , DNA de Protozoário , Fezes , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Blastocystis/genética , Blastocystis/isolamento & purificação , Humanos , Infecções por Blastocystis/diagnóstico , Infecções por Blastocystis/parasitologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Fezes/parasitologia , Técnicas de Diagnóstico Molecular/métodos , DNA de Protozoário/genética , Recombinases/metabolismo , Recombinases/genética
20.
Viruses ; 16(5)2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793634

RESUMO

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


Assuntos
Sistemas CRISPR-Cas , Influenza Aviária , Sensibilidade e Especificidade , Animais , Influenza Aviária/virologia , Influenza Aviária/diagnóstico , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Galinhas/virologia , Aves/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA