Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Voice ; 36(5): 608-621, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33004227

RESUMO

Mechanical impact stress on the vocal fold surface, particularly when excessive, has been postulated to cause the so-called phonotraumatic tissue lesions, such as nodules and polyps. The collision stress between the vocal folds depends on the vocal fold velocity at the time of impact. Hence this vocal fold collision speed is a relevant parameter when considering biomechanical economy of phonation, especially in voice professionals needing a louder voice than normal. Combining a precise photometric measurement of glottal area and simultaneous measurements of translaryngeal impedance (electroglottogram) for identifying the time of the maximum rate of increase of vocal fold contact allows computing the vocal fold collision speed in a wide range of loudnesses. The vocal fold collision speed is - for modal voicing - always smaller than the maximum vocal fold velocity during the closing phase, but it strongly increases with intensity. Moreover, this increase shows a biphasic pattern, with a significant enhancement from a certain value of dB on. Understanding physiological variables that influence vocal fold collision forces provides relevant insight into the pathophysiology and the prevention of voice disorders associated with phonotraumatic vocal hyperfunction.


Assuntos
Distúrbios da Voz , Voz , Glote/fisiologia , Humanos , Fonação/fisiologia , Vibração , Prega Vocal , Voz/fisiologia
2.
Appl Sci (Basel) ; 11(16)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36210866

RESUMO

The purpose of this paper is to report on the first in vivo application of a recently developed transoral, dual-sensor pressure probe that directly measures intraglottal, subglottal, and vocal fold collision pressures during phonation. Synchronous measurement of intraglottal and subglottal pressures was accomplished using two miniature pressure sensors mounted on the end of the probe and inserted transorally in a 78-year-old male who had previously undergone surgical removal of his right vocal fold for treatment of laryngeal cancer. The endoscopist used one hand to position the custom probe against the surgically medialized scar band that replaced the right vocal fold and used the other hand to position a transoral endoscope to record laryngeal high-speed videoendoscopy of the vibrating left vocal fold contacting the pressure probe. Visualization of the larynx during sustained phonation allowed the endoscopist to place the dual-sensor pressure probe such that the proximal sensor was positioned intraglottally and the distal sensor subglottally. The proximal pressure sensor was verified to be in the strike zone of vocal fold collision during phonation when the intraglottal pressure signal exhibited three characteristics: an impulsive peak at the start of the closed phase, rounded peak during the open phase, and minimum value around zero immediately preceding the impulsive peak of the subsequent phonatory cycle. Numerical voice production modeling was applied to validate model-based predictions of vocal fold collision pressure using kinematic vocal fold measures. The results successfully demonstrated feasibility of in vivo measurement of vocal fold collision pressure in an individual with a hemilaryngectomy, motivating ongoing data collection that is designed to aid in the development of vocal dose measures that incorporate vocal fold impact collision and stresses.

3.
Appl Sci (Basel) ; 9(15)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32377408

RESUMO

Excessive vocal fold collision pressures during phonation are considered to play a primary role in the formation of benign vocal fold lesions, such as nodules. The ability to accurately and reliably acquire intraglottal pressure has the potential to provide unique insights into the pathophysiology of phonotrauma. Difficulties arise, however, in directly measuring vocal fold contact pressures due to physical intrusion from the sensor that may disrupt the contact mechanics, as well as difficulty in determining probe/sensor position relative to the contact location. These issues are quantified and addressed through the implementation of a novel approach for identifying the timing and location of vocal fold contact, and measuring intraglottal and vocal fold contact pressures via a pressure probe embedded in the wall of a hemi-laryngeal flow facility. The accuracy and sensitivity of the pressure measurements are validated against ground truth values. Application to in vivo approaches are assessed by acquiring intraglottal and VF contact pressures using a synthetic, self-oscillating vocal fold model in a hemi-laryngeal configuration, where the sensitivity of the measured intraglottal and vocal fold contact pressure relative to the sensor position is explored.

4.
Appl Sci (Basel) ; 9(20)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34084559

RESUMO

A critical element in understanding voice production mechanisms is the characterization of vocal fold collision, which is widely considered a primary etiological factor in the development of common phonotraumatic lesions such as nodules and polyps. This paper describes the development of a transoral, dual-sensor intraglottal/subglottal pressure probe for the simultaneous measurement of vocal fold collision and subglottal pressures during phonation using two miniature sensors positioned 7.6 mm apart at the distal end of a rigid cannula. Proof-of-concept testing was performed using excised whole-mount and hemilarynx human tissue aerodynamically driven into self-sustained oscillation, with systematic variation of the superior-inferior positioning of the vocal fold collision sensor. In the hemilarynx experiment, signals from the pressure sensors were synchronized with an acoustic microphone, a tracheal-surface accelerometer, and two high-speed video cameras recording at 4000 frames per second for top-down and en face imaging of the superior and medial vocal fold surfaces, respectively. As expected, the intraglottal pressure signal exhibited an impulse-like peak when vocal fold contact occurred, followed by a broader peak associated with intraglottal pressure build-up during the de-contacting phase. As subglottal pressure was increased, the peak amplitude of the collision pressure increased and typically reached a value below that of the average subglottal pressure. Results provide important baseline vocal fold collision pressure data with which computational models of voice production can be developed and in vivo measurements can be referenced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA