RESUMO
A systematic study on the dissolution in concentrated alkali of two volcanic ashes from Cameroon, denoted as DAR and VN, is presented here. One volcanic ash, DAR, was 2 wt% richer in Fe and Ca and 4 wt% lower in Si than the other, designated as VN. Such natural raw materials are complex mixtures of aluminosilicate minerals (kaersutite, plagioclase, magnetite, diopside, thenardite, forsterite, hematite, and goethite) with a good proportion of amorphous phase (52 and 74 wt% for DAR and VN, respectively), which is more reactive than the crystalline phase in alkaline environments. Dissolution in NaOH + sodium silicate solution is the first step in the geopolymerisation process, which, after hardening at room temperature, results in solid and resistant building blocks. According to XRD, the VN finer ash powders showed a higher reactivity of Al-bearing soluble amorphous phases, releasing Al cations in NaOH, as indicated by IPC-MS. In general, dissolution in a strong alkaline environment did not seem to be affected by the NaOH concentration, provided that it was kept higher than 8 M, or by the powder size, remaining below 75 µm, while it was affected by time. However, in the time range studied, 1-120 min, the maximum element release was reached at about 100 min, when an equilibrium was reached. The hardened alkali activated materials show a good reticulation, as indicated by the low weight loss in water (10 wt%) when a hardening temperature of 25 °C was assumed. The same advantage was found for of the room-temperature consolidated specimens' mechanical performance in terms of resistance to compression (4-6 MPa). The study of the alkaline dissolution of volcanic ash is, therefore, an interesting way of predicting and optimising the reactivity of the phases of which it is composed, especially the amorphous ones.
RESUMO
Volcanic eruptions can release large amounts of tephra, lava, and gases, drawing attention due to their magnitude, energy, and impact on life and the environment. Among the most documented and sometimes dramatic effects of volcanic ashes are those linked to the input of diverse elements in the environment, which are released as a consequence of ash weathering. Laboratory studies have been conducted to investigate and predict the environmental input of chemical elements from volcanic ashes. This research paper describes the optimization of batch leaching tests used to investigate the release of ions from ashes collected in the Andes Cordillera after the eruption of the Puyehue volcano in 2011. Chemometric multivariate strategies were employed to evaluate the influence of variables affecting the leaching of volcanic ash. The effects of the main variables, namely contact time, the acidity of the leaching agent, the solid/liquid ratio, the particle size, and the stirring speed, were studied in leaching tests. To determine the optimal conditions for selected metal determinations, we employ Darringer's desirability function, which allows for the simultaneous optimization of the selected responses (element concentrations during the leaching process). Multielemental analysis (Na, Mg, Al, Si, P, Cl, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Cd, Hg, Tl, and Pb) was quantified by ICP-MS (inductively coupled plasma-mass spectrometry) following adequate dilution of test leaching. These results established the optimal experimental conditions for leaching volcanic ash. The most significant variables were the solid/liquid ratio and the stirring speed, resulting in two groups of elements with an adequate global desirability function (D) value.
Assuntos
Erupções Vulcânicas , Monitoramento Ambiental/métodos , Metais/análise , Tamanho da PartículaRESUMO
Background: Sudden volcanic eruptions can lead to volcanic ash entering the eyes, causing severe discomfort and complicating evacuation efforts. The specific effects of volcanic ash on ocular tissues, especially when wearing soft contact lenses (SCLs), are not well documented, prompting this experimental investigation. Methods: White rabbits with normal eyes were randomly divided into three groups: (1) a bare eye group: bare eye + volcanic ash exposure + eye washing, (2) an SCL group: SCL-wearing eye + volcanic ash exposure + eye washing, and (3) a control group: eye washing only. In groups 1 and 2, volcanic ash was applied to one eye under topical anesthesia, followed by immediate saline rinsing. Slit-lamp microscopy and histopathological analysis were conducted after euthanasia. Results: Slit-lamp and histopathological examinations revealed more significant corneal and conjunctival erosion in the bare eye group compared to the SCL group, which showed limited damage. The control group displayed no ocular damage. Conclusions: Guidelines from the "Volcanic Ash Health Effects: A Guide for the Public" by the National Research Institute for Earth Science and Disaster Resilience recommend removing SCLs during ashfall. Our findings suggest that the damage to the corneal and conjunctival epithelium is less severe in SCL-wearing eyes than in bare eyes, recommending that SCL wearers prioritize evacuation over lens removal during sudden ashfall.
RESUMO
The influx of volcanic ash into seawater alters particle composition with implications for the cellular, physiological and anatomical response of suspension-feeding organisms. Adult females of Crepipatella peruviana were exposed to three diets consisting of a fixed concentration of 50,000 cells ml-1 of the microalga Isochrysis galbana plus different concentrations of ash particles (30, 90 and 150 mg L-1). The objective was to determine the cellular, physiological and anatomical responses. Mortality increased with ash concentrations, while feeding and respiration rates, tissue weight, and condition index decreased. The gills showed severe degradation of cilia and the presence of large mucous aggregates of cilia and ash. An increase in ash resulted in decreased lipid peroxidation and protein carbonyls, but increased total antioxidant capacity and phenols. Thus, volcanic ash particles may exert a high impact at both cellular and physiological levels for C. peruviana, where inhibition of gill function reduces the ability to acquire food.
Assuntos
Gastrópodes , Brânquias , Gastrópodes/fisiologia , Gastrópodes/efeitos dos fármacos , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Água do Mar/química , Feminino , Erupções Vulcânicas , Peroxidação de Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismoRESUMO
Akahoya is a volcanic soil rich in alumina, primarily deposited in Kyushu, Japan. We have found that Akahoya adsorbs bacteria in the water surrounding cattle grazing areas, suggesting a potential for environmental purification. This study investigated the spectrum of microorganisms adsorbed by Akahoya using a column filled with Akahoya through which a suspension of microorganisms was passed. Shirasu soil, another volcanic soil with a different chemical composition, was used as a control. Akahoya effectively adsorbed a diverse range of microorganisms including Escherichia coli, Campylobacter jejuni, Vibrio parahaemolyticus, Salmonella Enteritidis, Staphylococcus aureus, Clostridium perfringens, spores of Bacillus subtilis and Bacillus anthracis, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), murine norovirus, and avian influenza virus (H3N2), whereas Shirasu soil did not adsorb any of the organisms examined. Moreover, bacteria naturally present in river water, such as aerobic bacteria, total coliforms, and Enterobacteriaceae as indicators of river contamination, as well as E. coli added artificially to sterilized river water, were reduced to below the detection limit (<1 CFU/mL) after being passed through Akahoya. Additionally, the number of viable E. coli continued to decrease after contact with Akahoya for 1 month, suggesting bactericidal effects. Notably, the adsorption of E. coli to Akahoya was influenced by the concentration of phosphate and the pH of the suspension due to the interaction between the surface phosphorylation of organisms and Al2O3, the major chemical component of Akahoya. The present results demonstrate the remarkable ability of Akahoya to remove phosphate and microbes, suggesting that Akahoya could be used for water purification processes.IMPORTANCEAlthough a safe and sufficient water supply is essential for the maintenance of hygienic conditions, a major challenge is to develop a comprehensive effective, sustainable, and cost-effective technological approach for the treatment and purification of contaminated water. In this study, we demonstrated that a novel volcanic soil, Akahoya, which has unlimited availability, is a highly effective adsorbent for a wide range of bacterial and viral pathogens, suggesting its potential as a sustainable resource for this purpose. It was suggested that the adsorption of microorganisms on Akahoya was mediated by phosphate groups present on the surface structures of microorganisms, which bind to the alumina component of Akahoya according to the phosphate concentration and pH of the liquid phase. The present findings highlight the exceptional ability of Akahoya to eliminate or reduce phosphate and microorganisms effectively in water purification processes, thus contributing to the development of efficient and sustainable solutions for addressing water pollution challenges.
Assuntos
Bactérias , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Adsorção , Vírus/genética , Vírus/isolamento & purificação , Microbiologia do Solo , Solo/química , Animais , Japão , Purificação da Água/métodos , Microbiologia da Água , Rios/microbiologia , Rios/virologia , Óxido de Alumínio/químicaRESUMO
Volcanic eruption is associated with the release of large volumes of pollutants in the environment, which can pose a risk to humans and other living organisms. The elemental and radioisotope composition of ash released during the Shiveluch Volcano eruption in 2023 was analyzed using ICP-MS and low-background gamma spectrometry. The ash consisted of 59% SiO2, 16.7% Al2O3, 5.3% CaO, 4.6 % Na2O, 4.5% Fe2O3, 1.4% K2O, 0.48% TiO2, 0.17% P2O5, 0.15% S, 0.078% MnO and 44 trace elements. Hazard Quotient and Hazard Index were calculated in order to evaluate the potential health risks to children and adults due to exposure to contaminants via inhalation, ingestion, and dermal contact. All values were below the unit, indicating a low probability of non-carcinogenic and cancerogenic risk occurrence in target groups. The average activity concentrations of the natural radionuclides were 350, 12.4 and 4.84 Bq/kg for 40K, 226Ra and 232Th. Radiological indices, including external and internal risk assessment, radium equivalent activity, annual effective dose, gamma index, and excess lifetime cancer risk were calculated to estimate the radiological hazard for the population. The values of all indices were below the recommended safety limits, indicating a low level of hazard for the exposed population.
Assuntos
Metais , Radioisótopos , Erupções Vulcânicas , Humanos , Metais/análise , Radioisótopos/análise , Rádio (Elemento)/análise , Medição de Risco , Tório/análiseRESUMO
The bioaccumulation of lead in soil poses a significant human health risk. The solidification/stabilization (S/S) technique, employing binders like Portland cement or lime, is a common method for remediating lead-contaminated soil. However, cement production has adverse environmental impacts, prompting the exploration of eco-friendly alternatives like alkali-activated materials (AAMs). This study assesses AAM efficacy in the S/S of lead-contaminated soil. The effects of several factors, including varying amounts of volcanic ash (VA), lead concentration, curing temperatures, and curing times are investigated. Unconfined compressive strength (UCS), toxicity characteristic leaching procedure test (TCLP), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscope-energy-dispersive spectroscopy-mapping analyses (FESEM/EDS/mapping) analyses are used to study the specimens. The findings indicated a substantial increase in the UCS of lead-contaminated soil treated with 15% VA (under oven curing (OC) conditions), and 10% VA (under ambient curing (AC) conditions) exhibited remarkable increases of up to 600% and 458%, respectively. Moreover, the leaching of Pb2+ ions from samples contaminated with 10,000 mg/kg (under OC conditions) and 2500 mg/kg (under AC conditions) experienced significant reductions of 87% (from 135.14 to 13.36 ppm) and 91% (from 26.32 to 2.21 ppm), respectively. The S/S process in these samples operated through three primary mechanisms of chemical bonding, physical encapsulation, and the formation of insoluble silicate. The formation of N-A-S-H and hydroxy sodalite structures played a vital role in facilitating these mechanisms. Therefore, alkali-activated VA demonstrated excellent performance in the remediation of lead-contaminated soil.
Assuntos
Álcalis , Chumbo , Poluentes do Solo , Solo , Chumbo/química , Poluentes do Solo/química , Solo/química , Álcalis/química , Erupções Vulcânicas , Difração de Raios X , Recuperação e Remediação Ambiental/métodosRESUMO
The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating.
Assuntos
Biomassa , Sargassum , Sargassum/química , Ecossistema , Jamaica , Estações do Ano , Erupções VulcânicasRESUMO
Carbon dioxide (CO2) is a primary greenhouse gas that has experienced a surge in atmospheric concentration due to human activities and lifestyles. It is imperative to curtail atmospheric CO2 levels promptly to alleviate the multifaceted impacts of climate warming. The soil serves as a natural reservoir for CO2 sequestration. The scientific premise of this study is that CO2 sequestration in agriculturally relevant, organically-deficient saline soil can be achieved by incorporating alkaline earth silicates. Volcanic ash (VA) was used as a soil amendment for CO2 removal from saline soil by leveraging enhanced silicate rock weathering (ERW). The study pursued two primary objectives: first, we aimed to evaluate the impact of various doses of VA, employed as an amendment for organically-deficient soil, on the growth performance of key cultivated crops (sorghum and mung bean) in inland saline-alkaline agricultural regions of northeastern China. Second, we aimed to assess alterations in the physical properties of the amended soil through mineralogical examinations, utilizing X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) analyses, quantifying the increase in inorganic carbon content within the soil. In the potting tests, mung bean plant height exhibited a noteworthy increase of approximately 41 % with the addition of 10 % VA. Sorghum plant height and aboveground and belowground biomass dry weights increased with VA application across all tested doses. At the optimal VA application rate (20 %), the sorghum achieved a CO2 sequestration rate of 0.14 kg CO2·m-2·month-1. XRD and SEM-EDS analyses confirmed that the augmented inorganic carbon in the VA-amended soils stemmed primarily from calcite accumulation. These findings contribute to elucidating the mechanism underlying VA as an amendment for organically-deficient soils and provide an effective approach for enhancing the carbon sink capacity of saline soils.
Assuntos
Solo , Sorghum , Humanos , Solo/química , Dióxido de Carbono/análise , Erupções Vulcânicas , Agricultura , Tempo (Meteorologia) , Grão Comestível/química , Sequestro de Carbono , SilicatosRESUMO
The manufacture of natural pozzolans as cement products is economically affordable and contributes to CO2 mitigation in the cement-based materials industry. Through two experimental stages, this study evaluates the feasibility of using volcanic ash (VA) to partially substitute portland cement (PC) in mortar production. In Stage 1, the effectiveness of different activation methods, such as calcination, alkali activation, and lime addition, in enhancing VA reactivity was assessed when the mortars were produced using 35% VA. The compressive strength (fcm) and physical properties of the mortars produced were determined at 7 and 28 days and compared with those of mortars without activated VA. In Stage 2, the most effective treatments obtained from Stage 1 were applied to produce mortars with 50% and 75% of VA replacements, focusing on their physical and mechanical properties. The findings revealed promising results, particularly when mortars were produced with up to 50% calcined VA (CVA) at 700 °C and 20 wt% lime addition, reaching a higher fcm than 45 MPa. Chemical activation with 2% CaCl or 1% NSi enhanced early-age strength in 35% VA-based mortars. Additionally, NSi-activated CVA-lime-based mortar at 50% VA achieved a notable fcm of 40 MPa at 28 days. Even mortars with 75% VA replacement achieved an adequate compressive strength of 33MPa at 28 days. This study determined that VA-based mortars have the potential for construction applications.
RESUMO
Modification of silica purified from the Merapi volcanic ash with magnetic material of Fe3O4 and attachment of cetyl triamine bromide (CTA-Br) on the magnetic cored has been performed to provide recoverable and positive surfaced of natural adsorbent. The magnetic cored was prepared via co-precipitation and CTA-Br attachment was conducted by a facile strategy. Then, the modified adsorbents were characterized by SEM, TEM, XRD, and FTIR instruments and examined for removing anionic Cr(VI) from the water media. The characterization data confirmed that crystals of Fe3O4 coated by SiO2 that has been bound with CTA-Br have been successfully formed. Additionally, increasing CTA-Br loaded gives thicker lamination on Fe3O4@SiO2/CTA-Br, but the CTA-Br loaded with higher than 0.25 mmol, leads to the coating peeled out. It is also demonstrated that Fe3O4@SiO2/CTA-Br prepared with CTA-Br 0.25 mmol is ideal for Cr(VI) anionic removal, regarding to the highest adsorption and very good separation or recovery process. Moreover, the optimal dose of Fe3O4@SiO2/CTA-Br in the Cr(VI) removal was observed at 0.25 g/20 mL under condition of pH 3 for 60 min. The adsorption of Cr(VI) well fits the Langmuir isotherm model with an adsorption capacity of 3.38 mg g-1 and is in a good agreement with pseudo-second order giving kinetic constant at 0.005 g mg-1 min-1. Thus, it is clear that the natural adsorbent material with recoverable properties for more efficient and wider application of removal Cr(VI) contaminant was expected from this study.
RESUMO
Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kilauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kilauea environment. We also discovered viable Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium intracellulare subsp. chimaera on volcanic ash collected during the 2018 Kilauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kilauea-derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter-island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kilauea-derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.
RESUMO
In the eruptive event of Tajogaite (2021) in La Palma, Canary Islands, large quantities of volcanic ash were accumulated, affecting the local environment and urban areas. In this study, volcanic ash sampled from urban areas (catalogued as municipal waste (20 03 03) by the European Wastes Catalogue) were converted into zeolites by hydrothermal synthesis at 100 °C with previous alkaline fusion at 550 °C with distilled water. During this process, new phases of zeolite principally type X and sodalite have been identified by XRD at 2 h of incubation. These zeolites, with the course of incubation time, present competitive processes where the transformation into sodalite develops after 24 h as the predominant phase. The synthesized zeolitic material presents a high concentration as impurities in Fe2O3 (13.70 wt%), Na2O (12.70 wt%), CaO (11.65 wt%), and TiO2 (3.89 wt%) coming from the volcanic ash and NaOH introduced in the synthesis methodology. These impurities impart different physicochemical capabilities to the zeolitic material. The application of zeolites obtained in a preliminary fluoride adsorption experiment with volcanic leachate water rich in fluoride has been tested in a novel way. Removal efficiencies of 41.4% at acidic pH (5.77) have been obtained with 2 g L-1 adsorbent zeolitic material doses. A value-added material is obtained and applied in a preliminary way to solve a problem generated by the volcanic ash itself, allowing the End of Waste status and meeting different objectives of the sustainable development goals of the UN Agenda 2030.
Assuntos
Cinza de Carvão , Zeolitas , Fluoretos , Espanha , Erupções Vulcânicas , Água , AdsorçãoRESUMO
A plant's growth and development are shaped by its genome and the capacity to negotiate its environment for access to light, water, and nutrients. There is a vital need to understand the interactions between the plant, its physical environment, and the fertilizers used in agriculture. In this study, a commercially available volcanic ash fertilizer, Azomite®, characterized as dacitic (rhyolitic) tuff breccia, was tested for its effect on promoting early seedling vigor. Early growth and photomorphogenesis processes are well studied in Arabidopsis. Seedling assays under different light conditions were used to dissect the underlying mechanisms involved. These assays are well established and can be translated to agriculturally important crop plants. The volcanic ash fertilizer was tested at different concentrations on seedlings grown on basic media lacking sucrose either in continuous darkness (Dc), continuous Red (Rc), Far-Red (FRc), or White Light (WLc). Micronutrients in the volcanic ash significantly increased seedling growth under Rc and WLc, but not under Dc and FRc, indicating that photosynthetically active radiation was required for the observed growth increase. Furthermore, red-light photoreceptor mutant, phyB-9, lacked the growth response, and higher amount of fertilizer reduced growth in all conditions tested. These data suggest that light triggers the ability of the seedling to utilize micronutrients in volcanic ash in a dose-dependent manner. The methods described here can be used to establish mechanisms of activity of various nutrient inputs and, coupled with whole-genome expression profiling, can lead to better insights into optimizing nutrient field applications to improve crop production.
RESUMO
Resumen Objetivo: Describir el comportamiento espacial de la contaminación por cenizas volcánicas y el efecto sobre la incidencia de enfermedades respiratorias agudas y crónicas, en las comunidades expuestas a la ceniza producida por la actividad del Volcán Turrialba, durante el año 2016. Materiales y métodos: Se realizó un estudio ecológico, observacional retrospectivo, transversal y correlacional, en donde se categorizaron 36 cantones a 50 km a la redonda del volcán Turrialba, según su nivel de contaminación. Resultados: Se constata un comportamiento diferenciado en el espacio geográfico de afectación de la pluma de ceniza volcánica, todos los territorios incluidos en el estudio resultaron con algún nivel de contaminación, sin embargo, se distinguen tres zonas, alta, media y baja contaminación. Un 46.6% de los eventos epidemiológicos estudiados poseen un mayor riesgo de presentarse en cantones con alta contaminación, sobre los cantones con media y baja contaminación. Conclusiones: Es posible que la afectación por contaminación debido a la ceniza volcánica haya incrementado el riesgo de exacerbación de enfermedades respiratorias crónicas, en la zona bajo la influencia directa de la pluma de cenizas volcánicas.
Abstract Objective: Describe the spatial behavior of contamination by volcanic ash and the effect on the incidence of acute and chronic respiratory diseases in communities exposed to the ash produced by the activity of the Turrialba Volcano during the year 2016. Materials and methods: An ecological, observational, retrospective, cross-sectional and correlational study was carried out, where 36 cantons within 50 km of the Turrialba volcano were categorized, according to their level of contamination. Results: A differentiated behavior is verified in the geographical space affected by the volcanic ash plume, all the territories included in the study resulted in some level of contamination, however three zones are distinguished, high, medium and low contamination. 46.6% of the epidemiological events studied have a higher risk of occurring in cantons with high contamination, over cantons with medium and low contamination. Conclusions: It is possible that the contamination due to volcanic ash has increased the risk of exacerbation of chronic respiratory diseases in the area under the direct influence of the volcanic ash plume.
RESUMO
Agriculture is an important economic sector for Ecuador, sustained by food crops like maize, potatoes, and vegetables cultivated in the highlands while cash crops such as coffee, bananas, cacao, and palm oil are grown on the coastal plains. But, Ecuador is also a country under the influence of several natural hazards due to its geographical location, atmospheric dynamics, and geological characteristics. One of the main risks to food security is the presence of a large number of active volcanoes scattered all over the country with the most representative enemy, the falling volcanic ash. The bibliography in general highlights the potential toxicity of volcanic ash from a human health perspective, but it also negatively influences plant development at the seed's germination, as well as low crop pollination, damaged fruits, reduced leaf respiration depending on the type of crop, the developmental stage, the ash layer, and the climate. The mineral composition of the volcanic ash can also be beneficial for the soil by increasing fertility but at the same time with contrasting effects on plants due to the influence on soil characteristics such as pH, soil aeration, and biodiversity, which can detrimentally affect some crops.
RESUMO
This study assesses the potential impacts on human health of volcanic ash emitted during the 2021 Tajogaite eruption (La Palma Island, Spain). Ash samples were physically and chemically characterized and leaching tests (with deionized water and acidic solution) were performed according to the IVHHN protocols to elucidate i) the leachable elements that may affect water quality and represent a potential threat for livestock and humans through drinking water supply; and ii) the bioaccessible fraction of toxicants able to be solubilized from ash surfaces if ashes are incidentally ingested by children. The most abundant readily water-soluble compounds were SO4, F, Cl, Na, Ca, Ba, Mg, and Zn. Fluoride and chloride (up to 1085 and 1347 mg/kg) showed higher values in distal ash samples than closer ones. The potential F availability assessed from water leachates may suggest important environmental and health implications. In addition, long-term health hazard due to a long-term weathering of tephra deposits should be possible as confirmed by the greater amount of F extracted by acidic solution. Concentration of other trace elements (e.g., As, V, Mn, Mo, Cr, Fe, Se, Ti, Pb) were low compared to global medians and within the range globally assessed. Indicative calculation of hazard for water supply showed that F concentration may exceed both the recommended value (1 mg/L) for irrigation purpose and the health-based drinking water limits of 1.5 mg/L (for humans) and 2 mg/L (for livestock). If the predicted concentrations in water were compared with the toxicologically dose, F showed a potential health-risk for children through drinking water. The indicative health-risk characterization via accidental ash ingestion showed that the direct exposure does not represent a primary source of F daily intake for children. This important outcome confirmed F as element with the greatest health threat during Tajogaite 2021 eruption.
Assuntos
Água Potável , Erupções Vulcânicas , Humanos , Cinza de Carvão/química , Monitoramento Ambiental , Espanha , Saúde PúblicaRESUMO
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13 C, δ15 N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to -59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15 N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.
Assuntos
Carbono , Sphagnopsida , Humanos , Áreas Alagadas , Nitrogênio/análise , Plantas , SoloRESUMO
Coiled tube field-flow fractionation (CTFFF) is currently applied to environmental and material studies. In the present work, a novel zone elution mode in CTFFF has been proposed and developed. Zone elution mode is based on the separation of particles by stepwise decreasing the flow rate of the carrier fluid and their subsequent elution at a constant flow rate. The fractionation parameters were optimized using a mixture of standard silica submicron particles (150, 390, and 900 nm). Taking samples of volcanic ash as examples, it has been demonstrated that zone elution mode can be successfully used for the fractionation of environmental nano- and submicron particles. For the first time, CTFFF was coupled online with a dynamic light scattering detector for the size characterization of eluted particles. Zone elution in CTFFF can serve for the further development of hyphenated techniques enabling efficient fractionation and size/elemental characterization of environmental particles in nano- and submicrometric size ranges.
RESUMO
Based on the physical and chemical properties of red sandstone (RS), RS is used to produce composite cementitious materials. The flowability, mechanical strength, and micromechanics of a red sandstone-cement binary cementitious material (RS-OPC) were investigated as functions of the amount of RS replacing the cement (OPC). Additionally, the feasibility of producing red sandstone-phosphogypsum-cement composite materials (RS-PG-OPC) using the phosphogypsum (PG)- enhanced volcanic ash activity of RS was investigated. The products of hydration and microstructures of RS-OPC and RS-PG-OPC were analyzed by XRD, FTIR, TG-DTG, and SEM. RS enhanced the flowability of RS-OPC relative to the unmodified cement slurry but lowered its mechanical strength, according to the experiments. When the quantity of OPC replaced was greater than 25%, the compressive strength after 28 days was substantially reduced, with a maximum reduction of 78.8% (RS-60). The microscopic mechanism of RS-OPC suggested that the active SiO2 in the RS can react with Ca(OH)2 to produce C-S-H but can only utilize small quantities of Ca(OH)2, confirming the low volcanic ash activity of RS. RS was responsible for dilution and filling. The incorporation of 5% PG into RS-PG-OPC slowed the hydration process compared with RS-OPC without PG but also increased the flowability and aided in the later development of the mechanical strength. This was primarily because the addition of PG provided the system with sufficient Ca2+ and SO42- to react with [Al(OH)6]3- to form ettringite (AFt), therefore accelerating the dissolution of Al3+ in RS to generate more AFt and C-(A)-S-H gels. To some extent, this excites the volcanic ash of RS. Therefore, if there is an abundance of waste RS in the region and a lack of other auxiliary cementitious materials, a sufficient quantity of PG and a finely powdered waste RS component can be used to replace cementitious materials prepared with OPC to reduce the mining of raw OPC materials.