Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21455, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271734

RESUMO

This paper presents the design and analysis of a high voltage gain converter utilizing a coupled inductor with reduced voltage stress, specifically for photovoltaic energy-based systems. The proposed converter employs a two-winding coupled inductor and voltage multiplier cells to achieve an increase in output voltage while mitigating voltage stress across semiconductor components. Additionally, the voltage multiplier cells function as voltage clamps for the power switch, further enhancing the converter's performance. The converter features a single switch design, which simplifies control, reduces cost, and improves reliability. Key advantages of the converter include a low component count, a common ground between input and output ports, and high efficiency. The converter's performance is thoroughly investigated through mode analysis and steady-state analysis. Comparative evaluations with similar converters are conducted to highlight the benefits and performance of the proposed design. To validate the theoretical analysis, a 125 W prototype with 26 V input and 200 V output voltages operating at a 50 kHz switching frequency is developed, and experimental results are presented, demonstrating the effectiveness and practicality of the proposed high voltage gain converter.

2.
Biomimetics (Basel) ; 8(6)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887614

RESUMO

This work proposes, analyzes, designs, and validates superior topologies of UHGH converters that are capable of supporting extremely large conversion ratios up to ∼2000× and output voltage up to ∼4-12 kV for future mobile soft robots from an input voltage as low as the range of a 1-cell battery pack. Thus, the converter makes soft robots standalone systems that can be untethered and mobile. The extremely large voltage gain is enabled by a unique hybrid combination of a high-gain switched magnetic element (HGSME) and a capacitor-based voltage multiplier rectifier (CVMR) that, together, achieve small overall size, efficient operation, and output voltage regulation and shaping with simple duty-cycle modulation. With superior performance, power density, and compact size, the UHGH converters prove to be a promising candidate for future untethered soft robots.

3.
Heliyon ; 9(3): e13964, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873516

RESUMO

Advances in information technology have dramatically enhanced mobile phones. Power capacity is one of the most significant limitations of a mobile phone. As a result, efficient energy management in such devices is critical everywhere. The goal of this research is to find a way to charge electronic devices wirelessly using radio frequency (RF) electromagnetic (EM) waves (Rectenna using energy detection-based spectrum sensing). Mechanical deformations cause frequency detuning, which lowers the effectiveness of antennas and rectennas that would otherwise allow wireless communication and RF energy harvesting in the far field. A rectenna based on a stretchable multiband antenna is designed as a self-powered system to perform reliably and integrate RF power received across its multiband despite mechanical deformations. Depending on what the battery needs, the proposed multiband antenna will work at 900 MHz, 1800 MHz, 2100 MHz, and 2.45 GHz as both an RF transducer and an RF energy harvester. Depending on the received RF power density (high), the receiving RF wave will be utilized for both communication and RF energy harvesting (RF-EH) when the battery's current voltage is less than 20% (referred to as "low voltage"). Otherwise, the received RF wave will be used only for RF-EH. The installed multiband rectifiers function perfectly in terms of efficiency and bandwidth. This proposed technique would reduce the charging crisis by 60-90% depending on the location of the mobile phone or receiver of ambient EM signals. This paper could help researchers in the field of RF energy-based wireless charging systems.

4.
Biomimetics (Basel) ; 8(1)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36810384

RESUMO

Soft robots have the potential to fundamentally change interactions between robots and the surrounding environment, and between robots and animals, and robots and humans in ways that today's hard robots are incapable of doing. However, to realize this potential, soft robot actuators require extremely high voltage supplies of more than 4 kV. The electronics that can satisfy this need currently are either too large and bulky or unable to achieve the high power efficiency required for mobile systems. To meet this challenge, this paper conceptualizes, analyzes, designs, and validates a hardware prototype of an ultra-high gain (UHG) converter that can support extremely large conversion ratios up to ∼1000× to provide up to 5 kV output voltage from an input voltage of ∼5-10 V. This converter is demonstrated to be able to drive HASEL (Hydraulically Amplified Self-Healing Electrostatic) actuators, a promising candidate to realize future soft mobile robotic fishes, from an input voltage range of a 1-cell battery pack. The circuit topology employs a unique hybrid combination of a high-gain switched magnetic element (HGSME) and a diode and capacitor-based voltage multiplier rectifier (DCVMR) to enable compact magnetic elements, efficient soft-charging in all flying capacitors, and adjustable output voltage capability with simple duty-cycle modulation. Achieving an efficiency of 78.2% at 15 W output power, while providing 3.85 kV output from 8.5 V input, the proposed UGH converter proves to be a promising candidate for future untethered soft robots.

5.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080982

RESUMO

WiFi energy harvesting is a promising solution for powering microsensors and microsystems through collecting electromagnetic (EM) energies that exist everywhere in modern daily lives. In order to harvest EM energy, we proposed a metamaterial-inspired antenna (MIA) based on the resonant magnetic dipole operating in the WiFi bands. The MIA consists of two metallic split-ring resonators (SRRs), separated by an FR4 dielectric layer, in the broadside coupled configuration. The incident EM waves excite surface currents in the coupled SRRs, and the energy is oscillating between them due to near-field coupling. By varying the vertical distance of the two SRRs, we may achieve impedance matching without complicated matching networks. Collected EM energy can be converted to DC voltages via a rectifier circuit at the output of the coupling coil. Measured results demonstrate that the designed MIA may resonate at 2.4 GHz with a deep-subwavelength form factor (14 mm×14 mm×1.6 mm). The WiFi energy-harvesting capability of the proposed MIA with an embedded one-stage Dickson voltage multiplier has also been evaluated. A rectified DC voltage is approximately 500 mV when the MIA is placed at a distance of 2 cm from the WiFi transmit antenna with a 9 dBm transmitting power. The proposed compact MIA in this paper is of great importance for powering future distributed microsystems.

6.
Sensors (Basel) ; 22(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684763

RESUMO

Radio frequency energy harvesting (RF-EH) is a potential technology via the generation of electromagnetic waves. This advanced technology offers the supply of wireless power that is applicable for battery-free devices, which makes it a prospective alternative energy source for future applications. In addition to the dynamic energy recharging of wireless devices and a wide range of environmentally friendly energy source options, the emergence of the RF-EH technology is advantageous in facilitating various applications that require quality of service. This review highlights the abundant source of RF-EH from the surroundings sources, including nearby mobile phones, Wi-Fi, wireless local area network, broadcast television signal or DTS, and FM/AM radio signals. In contrast, the energy is captured by a receiving antenna and rectified into a working direct current voltage. This review also summarizes the power of RF-EH technology, which would provide a guideline for developing RF-EH units. The energy harvesting circuits depend on cutting-edge electrical technology to achieve significant efficiency, given that they are built to perform with considerably small current and voltage. Hence, the review includes a thorough analysis and discussion of various RF designs and their pros and cons. Finally, the latest applications of RF-EH are presented.

7.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884040

RESUMO

Wireless power transfer (WPT) is an essential enabler for novel sensor networks such as the wireless powered communication network (WPCN). The efficiency of an energy rectifier is dependent on both input power and loading condition. In this work, to maximize the rectifier efficiency, we present a low-complexity numerical method based on an analytical rectifier model to calculate the optimal load for different rectifier topologies, including half-wave and voltage-multipliers, without needing time-consuming simulations. The method is based on a simplified analytical rectifier model based on the diode equivalent circuit including parasitic parameters. Furthermore, by using Lambert-W function and the perturbation method, closed-form solutions are given for low-input power cases. The method is validated by means of both simulations and measurements. Extensive transient simulation results using different diodes (Skyworks SMS7630 and Avago HSMS285x) and frequency bands (400 MHz, 900 MHz, and 2.4 GHz) are provided for validation of the method. A 400 MHz 1- and 2-stage voltage multiplier are designed and fabricated, and measurements are conducted. Different input signals are used when validating the proposed methods, including the single sinewave signal and the multisine signal. The proposed numerical method shows excellent accuracy with both signal types, as long as the output voltage ripple is sufficiently low.

8.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209575

RESUMO

A cold plasma source operating at atmospheric pressure powered by a voltage multiplier is reported. In addition to its usual high voltage output, there is an intermediate output of lower voltage and higher current capability. A discharge current is drawn from both outputs. The ratio of the current supplied by each output depends on the operating state, namely, before or after the plasma jet formation. The electrical circuit is equivalent to two dc sources connected in parallel, used to initiate and sustain the electrical discharge. The plasma source is aimed to study the effect of cold plasma on the surface of various liquid or solid materials, including polymers.

9.
Sensors (Basel) ; 19(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013757

RESUMO

This study presents a radiofrequency (RF)-energy-harvesting integrated circuit (IC) for powering wireless sensor networks with a wireless transmitter with an industrial, scientific, and medical (ISM) of 915 MHz. The proposed IC comprises an RF-direct current (DC) rectifier, an over-voltage protection circuit, a low-power low-dropout (LDO) voltage regulator, and a charger control circuit. In the RF-DC rectifier circuit, a six-stage Dickson voltage multiplier circuit is used to improve the received RF signal to a DC voltage by using native MOS with a small threshold voltage. The over-voltage protection circuit is used to prevent a high-voltage breakdown phenomenon from the RF front-end circuit, particularly for near-field communication. A low-power LDO regulator is designed to provide stable voltage by using zero frequency compensation and a voltage-trimming feedback. Charging current is amplified N times by using a current mirror to rapidly and stably charge a battery in the proposed charger control circuit. The obtained results revealed that the maximum power conversion efficiency of the proposed RF-energy-harvesting IC was 40.56% at an input power of -6 dBm, an output voltage of 1.5 V, and a load of 30 kΩ. A chip area of the RF-energy-harvesting IC was 0.58 × 0.49 mm2, including input/output pads, and power consumption was 42 µW.

10.
Sensors (Basel) ; 18(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673233

RESUMO

This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

11.
Sensors (Basel) ; 17(3)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28282910

RESUMO

For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

12.
Electrophoresis ; 35(8): 1114-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375573

RESUMO

The power supply for IEF based on features of the Cockcroft-Walton voltage multiplier (CW VM) is described in this work. The article describes a design of the IEF power supply, its electric characteristics, and testing by IEF analysis. A circuit diagram of the power supply included two opposite charged branches (each consisting of four voltage doublers). The designed CW VM was powered by 230 V/50 Hz alternate current and it generated up to 5 kV and 90 mW at the output. Voltage and current characteristics of the power supply were measured by known load resistances in the range from 10 kΩ to 1 GΩ, which is a common resistance range for IEF strip geometry. Further, the power supply was tested by a separation of a model mixture of colored pI markers using a 175 × 3 × 0.5 mm focusing bed. Automatically limited power load enabled analysis of samples without previous optimization of the focusing voltage or electric current time courses according to sample composition. Moreover, the developed power supply did not produce any intrinsic heat and was easy to set up with cheap and commonly available parts.


Assuntos
Fontes de Energia Elétrica , Focalização Isoelétrica/instrumentação , Eletricidade , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA