Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853597

RESUMO

Social bees have evolved sophisticated communication systems to recruit nestmates to newly found food sources. As foraging ranges can vary from a few hundred meters to several kilometers depending on the environment or season, populations of social bee species living in different climate zones likely show specific adaptations in their recruitment communication. Accordingly, studies in the western honey bee, Apis mellifera, demonstrated that temperate populations exhibit shallower dance-calibration curves compared with tropical populations. Here, we report the first comparison of calibration curves for three Indian Apis cerana lineages: the tropical Apis indica, and the two montane Himalayan populations Apis cerana cerana (Himachal Pradesh) and Apis cerana kashmirensis (Jammu and Kashmir). We found that the colonies of the two montane A. cerana populations show dance-distance calibration curves with significantly shallower slopes than those of the tropical A. indica. Next, we transferred A. c. cerana colonies to Bangalore (∼ 2600 km away) to obtain calibration curves in the same location as A. indica. The common garden experiment confirmed this difference in slopes, implying that the lineages exhibit genetically fixed differences in dance-distance coding. However, the slopes of the calibration curves of the transferred A. c. cerana colonies were also significantly higher than those of the colonies tested in their original habitat, indicating an important effect of the environment. The differences in dance-distance coding between temperate and tropical A. cerana lineages resemble those described for Apis mellifera, suggesting that populations of both species independently evolved similar adaptations.


Assuntos
Comunicação Animal , Animais , Abelhas/fisiologia , Índia , Clima Tropical
2.
Curr Biol ; 34(8): 1772-1779.e4, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479387

RESUMO

The honeybee waggle dance has been widely studied as a communication system, yet we know little about how nestmates assimilate the information needed to navigate toward the signaled resource. They are required to detect the dancer's orientation relative to gravity and duration of the waggle phase and translate this into a flight vector with a direction relative to the sun1 and distance from the hive.2,3 Moreover, they appear capable of doing so from varied, dynamically changing positions around the dancer. Using high-speed, high-resolution video, we have uncovered a previously unremarked correlation between antennal position and the relative body axes of dancer and follower bees. Combined with new information about antennal inputs4,5 and spatial encoding in the insect central complex,6,7 we show how a neural circuit first proposed to underlie path integration could be adapted to decoding the dance and acquiring the signaled information as a flight vector that can be followed to the resource. This provides the first plausible account of how the bee brain could support the interpretation of its dance language.


Assuntos
Comunicação Animal , Antenas de Artrópodes , Animais , Abelhas/fisiologia , Antenas de Artrópodes/fisiologia , Voo Animal/fisiologia
3.
Proc Biol Sci ; 290(2013): 20232274, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113935

RESUMO

The waggle dances of honeybees are a strikingly complex form of animal communication that underlie the collective foraging behaviour of colonies. The mechanisms by which bees assess the locations of forage sites that they have visited for representation on the dancefloor are now well-understood, but few studies have considered the remarkable backward translation of such information into flight vectors by dance-followers. Here, we explore whether the gene expression patterns that are induced through individual learning about foraging locations are mirrored when bees learn about those same locations from their nest-mates. We first confirmed that the mushroom bodies of honeybee dancers show a specific transcriptomic response to learning about distance, and then showed that approximately 5% of those genes were also differentially expressed by bees that follow dances for the same foraging sites, but had never visited them. A subset of these genes were also differentially expressed when we manipulated distance perception through an optic flow paradigm, and responses to learning about target direction were also in part mirrored in the brains of dance followers. Our findings show a molecular footprint of the transfer of learnt information from one animal to another through this extraordinary communication system, highlighting the dynamic role of the genome in mediating even very short-term behavioural changes.


Assuntos
Comunicação Animal , Encéfalo , Abelhas/genética , Animais , Aprendizagem , Corpos Pedunculados , Perfilação da Expressão Gênica
4.
Bio Protoc ; 13(16): e4789, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37638302

RESUMO

Honey bees use a complex form of spatial referential communication. Their waggle dance communicates to nestmates the direction, distance, and quality of a resource by encoding celestial cues, retinal optic flow, and relative food value into motion and sound within the nest. This protocol was developed to investigate the potential for social learning of this waggle dance. Using this protocol, we showed that correct waggle dancing requires social learning. Bees (Apis mellifera) that did not follow any dances before they first danced produced significantly more disordered dances, with larger waggle angle divergence errors, and encoded distance incorrectly. The former deficits improved with experience, but distance encoding was set for life. The first dances of bees that could follow other dancers had none of these impairments. Social learning, therefore, shapes honey bee signaling, as it does communication in human infants, birds, and multiple other vertebrate species. However, much remains to be learned about insects' social learning, and this protocol will help to address knowledge gaps in the understanding of sophisticated social signal learning, particularly in understanding the molecular bases for such learning. Key features It was unclear if honey bees (Apis mellifera) could improve their waggle dance by following experienced dancers before they first waggle dance. Honey bees perform their first waggle dances with more errors if they cannot follow experienced waggle dancers first. Directional and disorder errors improved over time, but distance error was maintained. Bees in experimental colonies continued to communicate longer distances than control bees. Dancing correctly, with less directional error and disorder, requires social learning. Distance encoding in the honey bee dance is largely genetic but may also include a component of cultural transmission.

5.
Front Behav Neurosci ; 17: 1140657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456809

RESUMO

Honey bees represent an iconic model animal for studying the underlying mechanisms affecting advanced sensory and cognitive abilities during communication among colony mates. After von Frisch discovered the functional value of the waggle dance, this complex motor pattern led ethologists and neuroscientists to study its neural mechanism, behavioral significance, and implications for a collective organization. Recent studies have revealed some of the mechanisms involved in this symbolic form of communication by using conventional behavioral and pharmacological assays, neurobiological studies, comprehensive molecular and connectome analyses, and computational models. This review summarizes several critical behavioral and brain processes and mechanisms involved in waggle dance communication. We focus on the role of neuromodulators in the dancer and the recruited follower, the interneurons and their related processing in the first mechano-processing, and the computational navigation centers of insect brains.

6.
Animals (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048438

RESUMO

Honeybees are known for their ability to communicate about resources in their environment. They inform the other foragers by performing specific dance sequences according to the spatial characteristics of the resource. The purpose of our study is to provide a new tool for honeybees dances recording, usable in the field, in a practical and fully automated way, without condemning the harvest of honey. We designed and equipped an outdoor prototype of a production hive, later called "GeoDanceHive", allowing the continuous recording of honeybees' behavior such as dances and their analysis. The GeoDanceHive is divided into two sections, one for the colony and the other serving as a recording studio. The time record of dances can be set up from minutes to several months. To validate the encoding and sampling quality, we used an artificial feeder and visual decoding to generate maps with the vector endpoints deduced from the dance information. The use of the GeoDanceHive is designed for a wide range of users, who can meet different objectives, such as researchers or professional beekeepers. Thus, our hive is a powerful tool for honeybees studies in the field and could highly contribute to facilitating new research approaches and a better understanding landscape ecology of key pollinators.

7.
Proc Natl Acad Sci U S A ; 120(12): e2213068120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917670

RESUMO

Honeybees (Apis mellifera carnica) communicate the direction and distance to a food source by means of a waggle dance. We ask whether bees recruited by the dance use it only as a flying instruction, with the technical form of a polar vector, or also translate it into a location vector that enables them to set courses directed toward the food source from arbitrary locations within their familiar territory. The flights of recruits captured on exiting the hive and released at distant sites were tracked by radar. The recruits performed first a straight flight in approximately the compass direction indicated by the dance. However, this "vector" portion of their flights and the ensuing tortuous "search" portion were strongly and differentially affected by the release site. Searches were biased toward the true location of the food and away from the location specified by translating the origin for the danced polar vector to the release site. We conclude that by following the dance recruits get two messages, a polar flying instruction (bearing and range from the hive) and a location vector that enables them to approach the source from anywhere in their familiar territory. The dance communication is much richer than thought so far.


Assuntos
Comunicação Animal , Esportes , Abelhas , Animais , Alimentos , Comunicação
8.
J Econ Entomol ; 115(6): 1846-1851, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36130184

RESUMO

Large-scale soybean [Glycine max (L.) Merr.] cultivation has substantially transformed the Midwestern landscape in recent decades. Floral nectar produced by immense fields of soybeans has the potential to influence foraging ecology and resource accumulation of honey bee (Apis mellifera L.) colonies. In this study, we combined microscopic and molecular pollen analysis of honey samples with waggle dance inference of spatial foraging patterns to demonstrate that honey bees routinely forage on soybeans in Ohio. In analyzing honey samples from across the state, we found ubiquitous presence of soybean pollen in honey collected from agricultural lands during soybean bloom. The abundance of soybean pollen in honey increased with the amount of soybean fields surrounding the apiaries. Honey bee waggle dances recorded during soybean bloom revealed that honey bees preferred soybean fields for foraging over other habitat types. With these results, future research efforts aimed at enhancing mutual interactions between soybeans and honey bees may represent an unexplored pathway for increasing soybean production while supporting honey bees and other pollinators in the surrounding landscape.


Assuntos
Himenópteros , Néctar de Plantas , Abelhas , Animais , Glycine max , Pólen , Agricultura , Polinização
9.
Biol Lett ; 18(8): 20220155, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36043303

RESUMO

Much like human consumers, honeybees adjust their behaviours based on resources' supply and demand. For both, interactions occur in fluctuating conditions. Honeybees weigh the cost of flight against the benefit of nectar and pollen, which are nutritionally distinct resources that serve different purposes: bees collect nectar continuously to build large honey stores for overwintering, but they collect pollen intermittently to build modest stores for brood production periods. Therefore, nectar foraging can be considered a supply-driven process, whereas pollen foraging is demand-driven. Here we compared the foraging distances, communicated by waggle dances and serving as a proxy for cost, for nectar and pollen in three ecologically distinct landscapes in Virginia. We found that honeybees foraged for nectar at distances 14% further than for pollen across all three sites (n = 6224 dances, p < 0.001). Specific temporal dynamics reveal that monthly nectar foraging occurs at greater distances compared with pollen foraging 85% of the time. Our results strongly suggest that honeybee foraging cost dynamics are consistent with nectar supply-driven and pollen demand-driven processes.


Assuntos
Comportamento Alimentar , Néctar de Plantas , Animais , Abelhas , Humanos , Pólen , Virginia
10.
Ecol Evol ; 12(6): e8979, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784068

RESUMO

Honey bees provide invaluable economic and ecological services while simultaneously facing stressors that may compromise their health. For example, agricultural landscapes, such as a row crop system, are necessary for our food production, but they may cause poor nutrition in bees from a lack of available nectar and pollen. Here, we investigated the foraging dynamics of honey bees in a row crop environment. We decoded, mapped, and analyzed 3459 waggle dances, which communicate the location of where bees collected food, for two full foraging seasons (April-October, 2018-2019). We found that bees recruited nestmates mostly locally (<2 km) throughout the season. The shortest communicated median distances (0.474 and 0.310 km), indicating abundant food availability, occurred in July in both years, which was when our row crops were in full bloom. We determined, by plotting and analyzing the communicated locations, that almost half of the mid-summer recruitment was to row crops, with 37% (2018) and 50% (2019) of honey bee dances indicating these fields. Peanut was the most attractive in July, followed by corn and cotton but not soybean. Overall, row crop fields are indicated by a surprisingly large proportion of recruitment dances, suggesting that similar agricultural landscapes may also provide mid-summer foraging opportunities for honey bees.

11.
Insects ; 13(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35206685

RESUMO

The ethological study of dance behaviour has yielded some findings since Karl Von Frisch discovered and interpreted the 'dance language' in the honey bee. However, the function and role of long non-coding RNAs on dance behaviour are hardly known until now. In this study, the differential expression patterns of lncRNAs in the brains of waggling dancers and non-dancing bees were analysed by RNA sequencing. Furthermore, lncRNA-mRNA association analysis was constructed to decipher the waggle dance. The results of RNA sequencing indicated that a total of 2877 lncRNAs and 9647 mRNAs were detected from honey bee brains. Further comparison analysis displayed that two lncRNAs, MSTRG.6803.3 and XR_003305156.1, may be involved in the waggle dance. The lncRNA-mRNA association analysis showed that target genes of differentially expressed lncRNAs in the brains between waggling dancers and non-dancing bees were mainly annotated in biological processes related to metabolic process, signalling and response to stimulus and in molecular function associated with signal transducer activity, molecular transducer activity and binding. Nitrogen metabolism was likely implicated in the modulation of the waggle dance. Our findings contribute to further understanding the occurrence and development of waggle dance.

12.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137133

RESUMO

Honey bees (Linnaeus, Hymenoptera: Apidae) are widely used as commercial pollinators and commonly forage in agricultural and urban landscapes containing neonicotinoid-treated plants. Previous research has demonstrated that honey bees display adverse behavioral and cognitive effects after treatment with sublethal doses of neonicotinoids. In laboratory studies, honey bees simultaneously increase their proportional intake of neonicotinoid-treated solutions and decrease their total solution consumption to some concentrations of certain neonicotinoids. These findings suggest that neonicotinoids might elicit a suboptimal response in honey bees, in which they forage preferentially on foods containing pesticides, effectively increasing their exposure, while also decreasing their total food intake; however, behavioral responses in semifield and field conditions are less understood. Here we conducted a feeder experiment with freely flying bees to determine the effects of a sublethal, field-realistic concentration of imidacloprid (IMD) on the foraging and recruitment behaviors of honey bees visiting either a control feeder containing a sucrose solution or a treatment feeder containing the same sucrose solution with IMD. We report that IMD-treated honey bees foraged less frequently (-28%) and persistently (-66%) than control foragers. Recruitment behaviors (dance frequency and dance propensity) also decreased with IMD, but nonsignificantly. Our results suggest that neonicotinoids inhibit honey bee foraging, which could potentially decrease food intake and adversely affect colony health.


Assuntos
Comportamento Apetitivo , Abelhas/efeitos dos fármacos , Inseticidas , Neonicotinoides , Animais , Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Sacarose
13.
J Exp Biol ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795415

RESUMO

Honey bees estimate distances to food sources using image motion experienced on the flight path and they use this measure to tune the waggle phase duration in their dance communication. Most studies on the dance-related odometer are based on experiments with Apis mellifera foragers trained into small tunnels with black and white patterns which allowed quantifiable changes in the optic flow. In this study, we determined the calibration curves of two Asian honey bee species, A. florea and A. cerana, in two different natural environments with clear differences in the vegetation conditions and hence visual contrast. We found that the dense vegetation condition (with higher contrast) elicited a more rapid increase in the waggle phase duration with distance than the sparse vegetation in A. florea but not in A. cerana Our findings suggest that contrast sensitivity of the waggle dance odometer might vary among honey bee species.

14.
PeerJ ; 9: e11187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868825

RESUMO

Honey bees (genus Apis) can communicate the approximate location of a resource to their nestmates via the waggle dance. The distance to a goal is encoded by the duration of the waggle phase of the dance, but the precise shape of this distance-duration relationship is ambiguous: earlier studies (before the 1990s) proposed that it is non-linear, with the increase in waggle duration flattening with distance, while more recent studies suggested that it follows a simple linear function (i.e. a straight line). Strikingly, authors of earlier studies trained bees to much longer distances than authors of more recent studies, but unfortunately they usually measured the duration of dance circuits (waggle phase plus return phase of the dance), which is only a correlate of the bees' distance signal. We trained honey bees (A. mellifera carnica) to visit sugar feeders over a relatively long array of distances between 0.1 and 1.7 km from the hive and measured the duration of both the waggle phase and the return phase of their dances from video recordings. The distance-related increase in waggle duration was better described by a non-linear model with a decreasing slope than by a simple linear model. The relationship was equally well captured by a model with two linear segments separated at a "break-point" at 1 km distance. In turn, the relationship between return phase duration and distance was sufficiently well described by a simple linear model. The data suggest that honey bees process flight distance differently before and beyond a certain threshold distance. While the physiological and evolutionary causes of this behavior remain to be explored, our results can be applied to improve the estimation of honey bee foraging distances based on the decoding of waggle dances.

15.
Mol Ecol ; 30(11): 2676-2688, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742503

RESUMO

Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.


Assuntos
Comunicação Animal , Alimentos , Animais , Abelhas/genética , Encéfalo , Expressão Gênica , Odorantes
16.
Genes Brain Behav ; 19(1): e12592, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145838

RESUMO

Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter-individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR-2. As expected, foragers showed large inter-individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co-opting behavioural modules involved in food search and foraging in solitary insects.


Assuntos
Abelhas/genética , Variação Biológica da População , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas de Insetos/genética , Animais , Abelhas/fisiologia , Encéfalo/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Comportamento Alimentar , Proteínas de Insetos/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo
17.
Insects ; 10(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614450

RESUMO

Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.

18.
J Exp Biol ; 222(Pt 11)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31097604

RESUMO

Honey bees can communicate navigational information which makes them unique amongst all prominent insect navigators. Returning foragers recruit nest mates to a food source by communicating flight distance and direction using a small scale walking pattern: the waggle dance. It is still unclear how bees transpose flight information to generate corresponding dance information. In single feeder shift experiments, we monitored for the first time how individual bees update dance duration after a shift of feeder distance. Interestingly, the majority of bees (86%) needed two or more foraging trips to update dance duration. This finding demonstrates that transposing flight navigation information to dance information is not a reflexive behavior. Furthermore, many bees showed intermediate dance durations during the update process, indicating that honey bees highly likely use two memories: (i) a recently acquired navigation experience and (ii) a previously stored flight experience. Double-shift experiments, in which the feeder was moved forward and backward, created an experimental condition in which honey bee foragers did not update dance duration; suggesting the involvement of more complex memory processes. Our behavioral paradigm allows the dissociation of foraging and dance activity and opens the possibility of studying the molecular and neural processes underlying the waggle dance behavior.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Navegação Espacial , Animais , Comportamento Apetitivo , Memória Espacial
19.
Mol Ecol ; 28(3): 686-697, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549365

RESUMO

We explored the pollen foraging behaviour of honey bee colonies situated in the corn and soybean dominated agroecosystems of central Ohio over a month-long period using both pollen metabarcoding and waggle dance inference of spatial foraging patterns. For molecular pollen analysis, we developed simple and cost-effective laboratory and bioinformatics methods. Targeting four plant barcode loci (ITS2, rbcL, trnL and trnH), we implemented metabarcoding library preparation and dual-indexing protocols designed to minimize amplification biases and index mistagging events. We constructed comprehensive, curated reference databases for hierarchical taxonomic classification of metabarcoding data and used these databases to train the metaxa2 DNA sequence classifier. Comparisons between morphological and molecular palynology provide strong support for the quantitative potential of multi-locus metabarcoding. Results revealed consistent foraging habits between locations and show clear trends in the phenological progression of honey bee spring foraging in these agricultural areas. Our data suggest that three key taxa, woody Rosaceae such as pome fruits and hawthorns, Salix, and Trifolium provided the majority of pollen nutrition during the study. Spatially, these foraging patterns were associated with a significant preference for forests and tree lines relative to herbaceous land cover and nonflowering crop fields.


Assuntos
Comportamento Apetitivo , Abelhas/fisiologia , Comportamento Animal , Pólen/genética , Animais , Código de Barras de DNA Taxonômico , Bases de Dados de Ácidos Nucleicos , Ohio , Estações do Ano
20.
Front Psychol ; 9: 1517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186204

RESUMO

Insects have acquired excellent sensory information processing abilities in the process of evolution. In addition, insects have developed communication schemes based on the temporal patterns of specific sensory signals. For instance, male moths approach a female by detecting the spatiotemporal pattern of a pheromone plume released by the female. Male crickets attract a conspecific female as a mating partner using calling songs with species-specific temporal patterns. The dance communication of honeybees relies on a unique temporal pattern of vibration caused by wingbeats during the dance. Underlying these behaviors, neural circuits involving inhibitory connections play a critical common role in processing the exact timing of the signals in the primary sensory centers of the brain. Here, we discuss common mechanisms for processing the temporal patterns of sensory signals in the insect brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA