Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Hazard Mater ; 478: 135333, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39116751

RESUMO

The synthesis of novel water-soluble polymers with biodegradability is an effective way to mitigate their negative environmental impacts. In this study, semi-aromatic copolyester poly(butylene succinate-co-butylene terephthalate) (PBST) with exceptional biodegradability is used as the resin matrix. Anionic sodium 1-3-isophthalate-5-sulfonate (SIPA) is introduced as a fourth monomer to prepare random poly(butylene succinate-co-butylene terephthalate-co-butylene 5-sodiosulfoisophthalate) (PBSTS) copolyesters by melt copolymerization. The incorporation of ionic groups enhances the hydrophilicity and water absorption of the copolyesters, resulting in water-soluble materials that exhibit ionic and temperature responsivity. Furthermore, the ionized biodegradable copolyesters demonstrate distinct pH-dependent degradation, which is accelerated at pH = 5.5 and 8.5 but inhibited at pH = 7.2. Degradation assessments in simulated body fluids reveal that the PBSTS copolyesters exhibit significant degradation in gastric fluids at pH = 1.5 with minimal degradation in intestinal fluids at pH = 6.8 and in body fluids at pH = 7.0. This unique degradation performance highlights the potential of these materials for addressing the challenges associated with selective drug delivery and localized controlled release in the human body.

2.
Environ Sci Technol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134471

RESUMO

For water-soluble polymers (WSPs) that enter environmental systems at their end-of-life, biodegradability is a key functionality. For the development and regulation of biodegradable WSPs, testing methods that are both scientifically validated and economically practicable are needed. Here, we used respirometric laboratory tests to study the biodegradation of poly(amino acids), poly(ethylene glycol), and poly(vinyl alcohol), together with appropriate low-molecular-weight reference substrates. We varied key protocol steps of commonly used testing methods, which were originally established for small molecules and tested for effects on WSP biodegradation. We found that avoiding aeration of the wastewater inoculate prior to WSP addition, incubating WSP with filter-sterilized wastewater prior to biodegradation testing, and lowering the WSP concentration can increase biodegradation rates of WSPs. Combining the above-mentioned protocol variations substantially affected the results of the biodegradation testing for the two poly(amino acids) tested herein (i.e., poly(lysine) and poly(aspartic acid)). Our findings were consistent between microbial inocula derived from two municipal wastewater treatment plants. Our study presents promising biodegradation dynamics for poly(amino acids) and highlights the importance, strengths, and limitations of respirometric laboratory methods for WSP biodegradation testing.

3.
Polymers (Basel) ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065404

RESUMO

The aquatic ecotoxicity of three α-amino acid-derived polyamidoamines (PAAs) was studied using zebrafish embryos as a viable vertebrate model organism. The PAAs examined were water-soluble amphoteric polyelectrolytes with a primarily negative charge, which were efficient flame retardants for cotton. The fish embryo acute toxicity test performed with PAA water solutions using 1.5-500 mg L-1 concentrations showed that toxicity did not statistically differ from the control. The survival rates were indeed >90%, even at the highest concentration; the hatching rates were >80%; and the numbers of morphological defects were comparable to those of the control. Tests using transgenic zebrafish lines indicated that the numbers of microscopic vascular and musculoskeletal defects were comparable to the control, with one random concentration showing doubled alterations. Sensory-motor tests in response to visual and tactile stimuli were also performed. In the presence of PAAs, embryos exposed to alternating light/dark cycles showed an insignificant mobility reduction during the dark phase. Touch-evoked response tests revealed a mild effect of PAAs on the neuromotor system at concentrations > 10 mg L-1. The cystine/glycine copolymer at 100 mg L-1 exhibited the greatest effect. Overall, the studied PAAs showed a minimal impact on aquatic systems and should be further considered as promising ecofriendly materials.

4.
Gels ; 10(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786237

RESUMO

Sacran is a supergiant cyanobacterial polysaccharide that forms mesogenic supercoil rods that exhibit liquid crystalline (LC) gels at deficient concentrations of around 0.5 wt%, and has several bioactive stimuli-responsive functions. Here, we attempted to form oriented microfibers of sacran by electrospinning, following structural analyses of the sacran rods. A heterogeneous acid-hydrolysis method using a protonated cation-exchange resin was adopted to examine the short-time exposition of concentrated acid to sacran rods. From the supernatant, the oligomeric fraction that was soluble in water and methanol was isolated. The oligomeric fraction had a main sugar ratio of α-Glc:ß-Glc:α-Xyl:ß-Xyl:α-Rha of 2:5:1.5:1.5:4 (Glc:Xyl:Rha = 7 (=4 + 3):3:4), and it was speculated that the sacran structure includes rhamnoglucan and xyloglucan (4:3), which are generally rigid enough to exhibit LC. To make oriented microfibers of LC sacran, solubility testing was performed on sacran to find good new solvents of polyhydroxy alcohols such as ethylene glycol, 1,2-propanediol, and glycerol. The oriented film was prepared from a sacran aqueous solution where calcium compound particles deposited on the film are different from polyhydroxy alcohol solutions. Although sacran could not form microfibers by itself, polymer composite microfibers of sacran with poly(vinyl alcohol) were prepared by electrospinning. Cross-polarizing microscopy revealed the molecular orientation of the microfibers.

5.
Sci Total Environ ; 916: 170320, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278278

RESUMO

In environmental analysis, the detection of water-soluble synthetic polymers (WSSP) presents considerable challenges. Thus, a precise and reproducible analytical method was developed using continuous-flow off-line pyrolysis with gas chromatography/mass spectrometry (GC/MS) to simultaneously identify multiple water-soluble polymers from a single environmental sample. WSSP are widely used in multiple industries as hydrogels due to their hydrophilic character and potential biocompatibility. This adaptability of hydrogels is reflected in their ability to provide customized formulations for specific needs, such as in the development of personal care products, medicine, and pharmaceuticals. Specifically, polyvinylpyrrolidone (PVP), poly(N-vinylcaprolactam) (PNVCL), and polyethyleneimine (PEI) were targeted for analysis in wastewater, employing unique pyrolysis products for identification. These polymers require careful assessment in wastewater to evaluate potential environmental risks associated with their release. PVP and PNVCL were identified through two pyrolysis products, while six pyrolysis products were utilized for the identification of PEI. The validated method demonstrated very good linearity and reproducibility, with correlation coefficients ranging from 0.94 to 0.99 and relative standard deviation (RSD) values between 3 % and 36 % for the targeted compounds. The limit of quantification (LOQ) for the three polymers ranged from 1 to 10 µg L-1. Moreover, the average recovery rates for these polymers, determined from artificial water samples, were approx. 85 %. Utilizing the validated method, water samples from seven wastewater treatment plants in Germany were successfully analyzed, confirming the presence of these polymers at elevated concentrations in the µg L-1 range. Notably, untreated influent waters exhibited higher polymer levels compared to treated influents and effluents, underscoring their significant contribution to overall polymer content. The developed analytical method provides an efficient tool for the simultaneous identification and quantification of PVP, PNVCL, and PEI in wastewater samples. The results highlighted the prevalent presence of PVP, PNVCL, and PEI in the tested wastewater samples, indicating their significant abundance.

6.
J Hazard Mater ; 466: 133592, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290331

RESUMO

The excessive use and accumulation of water-soluble polymers (WSPs, known as "liquid plastics") in the environment can pose potential risks to both ecosystems and human health, but the environmental fate of WSPs remains unclear. Here, the adsorption behavior of WSPs with different molecular weight on kaolinite (Kaol) and montmorillonite (Mt) were examined. The results showed that the adsorption of PEG and PVP on minerals were controlled by hydrogen bond and van der Waals force. The Fourier transform infrared (FTIR) spectra and two-dimensional correlation spectroscopy (2D-COS) analysis revealed that there were interactions between the Al-O and Si-O groups of the minerals and the polar O- or N-containing functional groups as well as the alkyl groups of PEG and PVP. The adsorption characteristics of WSPs were closely related to their molecular weight and the pore size of minerals. Due to the relatively large mesopore size of Kaol, both PEG and PVP were absorbed into inner spaces, for which the adsorption capacity increased with molecular weight of the polymers. For Mt, all types of PEG could enter its micropores, while PVP with larger molecular weights appeared to be confined externally, leading to a decrease in the adsorption capacity of PVP with increasing molecular weight. The findings of this study provide a theoretical basis for scientific evaluation of environmental processes of WSPs.

7.
Environ Sci Technol ; 58(2): 1274-1286, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164921

RESUMO

Water-soluble polymers (WSPs) are used in diverse applications, including agricultural formulations, that can result in the release of WSPs to soils. WSP biodegradability in soils is desirable to prevent long-term accumulation and potential associated adverse effects. In this work, we assessed adsorption of five candidate biodegradable WSPs with varying chemistry, charge, and polarity characteristics (i.e., dextran, diethylaminoethyl dextran, carboxymethyl dextran, polyethylene glycol monomethyl ether, and poly-l-lysine) and of one nonbiodegradable WSP (poly(acrylic acid)) to sand and iron oxide-coated sand particles that represent important soil minerals. Combined adsorption studies using solution-depletion measurements, direct surface adsorption techniques, and column transport experiments over varying solution pH and ionic strengths revealed electrostatics dominating interactions of charged WSPs with the sorbents as well as WSP conformations and packing densities in the adsorbed states. Hydrogen bonding controls adsorption of noncharged WSPs. Under transport in columns, WSP adsorption exhibited fast and slow kinetic adsorption regimes with time scales of minutes to hours. Slow adsorption kinetics in soil may lead to enhanced transport but also shorter lifetimes of biodegradable WSPs, assuming more rapid biodegradation when dissolved than adsorbed. This work establishes a basis for understanding the coupled adsorption and biodegradation dynamics of biodegradable WSPs in agricultural soils.


Assuntos
Dextranos , Solo , Solo/química , Estrutura Molecular , Adsorção , Areia , Água , Minerais
8.
Sci Total Environ ; 907: 168086, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37890633

RESUMO

While the inclusion of synthetic polymers such as primary microplastics within personal care products have been widely restricted under EU/UK Law, water-soluble polymers (WSPs) have so far slipped the net of global chemical regulation despite evidence that these could be polluting wastewater effluents at concentrations greatly exceeding those of microplastics. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) represent WSPs with common industry and household uses, down-the-drain disposal and a direct route to wastewater treatment plants, conveying high risk of environmental leaching into freshwater ecosystems. The current study is the first investigating the impacts of predicted environmental concentrations of these WSPs on life-history traits of two freshwater species also constituting a disease model (fish - Poecilia reticulata and parasite - Gyrodactylus turnbulli). Single effects of WSPs on fish as well as their interactive effects with infection of the ectoparasite were determined over a 45-day exposure. Generally, WSPs reduced fish growth and increased routine metabolic rate of fish implying a depleted energetic budget, however these effects were dose, exposure time and polymer dependent. Parasitic infection alone caused a significant reduction in fish growth and enhanced fish routine metabolic rate. In contrast, a non-additive effect on metabolic rate was evident in fish experiencing simultaneous infection and WSP exposure, suggesting a protective effect of the two WSPs for fish also exposed to a metazoan ectoparasite. Off-host parasite survival was significantly lowered by both WSPs; however, parasite counts of infected fish also exposed to WSP were not significantly different from the control, implying more complex mechanisms may underpin this stressor interaction. Distinct detrimental impacts were inflicted on both organisms implying environmental leaching of WSPs may be causing significant disruption to interspecies interactions within freshwater ecosystems. Additionally, these results could contribute to sustainable development in industry, as we conclude PVA represents a less harmful alternative to PVP.


Assuntos
Poecilia , Poluentes Químicos da Água , Animais , Polímeros , Plásticos , Ecossistema , Microplásticos , Água Doce , Água/química , Poluentes Químicos da Água/toxicidade
9.
Chimia (Aarau) ; 77(11): 764-772, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047844

RESUMO

Agricultural formulations contain water-soluble and water-dispersible polymers (WSPs and WDPs) to increase the application efficiency of the active ingredients (e.g. pesticides and fertilizers). Despite their direct release to soils and crops, there is currently no inventory of used polymers and their fate in soils is poorly studied and understood. Herein, we identify WSPs and WDPs used in agricultural formulations on the German and Swiss markets. By searching the scientific literature, patents, and manufacturer websites, we tentatively identified that 233 of the 1815 listed trade names of formulation additives contained polymers, the majority of which belonged to three main chemical classes: polyethylene glycol (PEG)-based (co)polymers, functionalized polysaccharides (PSacs), and vinylic (co)polymers (VCPs). We report information on their functionalization, molecular weights, and market significance. In 2015, their estimated combined annual application volume in Switzerland surpassed 100 tonnes. Low molecular weight PEGs and natural, unfunctionalized PSacs reportedly biodegrade, suggesting no accumulation in soils associated with their use as formulation additives. Conversely, high molecular weight functionalized PEGs, functionalized PSacs, and the majority of the VCPs have been reported to undergo only slow or no soil biodegradation. These polymers may thus persist and accumulate in agricultural soils, requiring more detailed investigations of their environmental fate and resulting exposure scenarios. There is a need for systematic studies on the effects of polymer structure, molecular weight, and functionalization on soil biodegradability.

10.
Water Res ; 245: 120650, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742403

RESUMO

Water-soluble polymers (WSPs) are commonly used in industrial, commercial, agricultural and pharmaceutical products and their molecular weights and concentrations vary considerably. Methods commonly used in the analysis of WSPs are often for pure products or formulations with only a few other high MW constituents. These methods, like size exclusion chromatography (SEC) or Gel Permeation Chromatography coupled with Mass Spectrometry (MS) can be frustrated by the impact of the necessary separation steps prior to identification and the limitations of MS when identifying and quantifying polymers. To that end, the employment of a Nuclear Magnetic Resonance (NMR) method to identify, characterize and quantify WSPs in the real-world is reported for the first time. Samples were taken from fourteen UK inland river sites, concentrated via air-drying, freeze-drying or vacuum-drying and analyzed using 1D 1H NMR and 2D 1H Diffusion Ordered Spectroscopy (DOSY) NMR analysis. Seven of the river sites showed the presence of polyethylene glycol (PEG) with a range of molecular weights, evidencing the application of these techniques in analysis of WSPs. Soil percolation models evidenced the proof of principle that these techniques can also be used for the detection of polyacrylamide (PAM) and polyacrylic acid (PAA). This work should better enable the evaluation of the biological impact of WSPs on aquatic organisms in future studies.

11.
Macromol Rapid Commun ; 44(18): e2300218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435988

RESUMO

A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (Mn ) and dispersities (D) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers. All the synthesized polymers are characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. It is believed that this new route to water soluble ROMP homopolymers as well as the cost-effective and environmentally friendly route to degradable copolymers and block-copolymers could find applications in biomedicine in the near future.


Assuntos
Polímeros , Água , Polimerização , Solventes , Polímeros/química , Catálise
12.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241927

RESUMO

Electrospun fibers containing levocetirizine, a BCS III drug, were prepared from three water-soluble polymers, hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA). Fiber-spinning technology was optimized for each polymer separately. The polymers contained 10 wt% of the active component. An amorphous drug was homogeneously distributed within the fibers. The solubility of the drug in the polymers used was limited, with a maximum of 2.0 wt%, but it was very large in most of the solvents used for fiber spinning and in the dissolution media. The thickness of the fibers was uniform and the presence of the drug basically did not influence it at all. The fiber diameters were in the same range, although somewhat thinner fibers could be prepared from PVA than from the other two polymers. The results showed that the drug was amorphous in the fibers. Most of the drug was located within the fibers, probably as a separate phase; the encapsulation efficiency proved to be 80-90%. The kinetics of the drug release were evaluated quantitatively by the Noyes-Whitney model. The released drug was approximately the same for all the polymers under all conditions (pH), and it changed somewhere between 80 and 100%. The release rate depended both on the type of polymer and pH and varied between 0.1 and 0.9 min-1. Consequently, the selection of the carrier polymer allowed for the adjustment of the release rate according to the requirements, thus justifying the use of electrospun fibers as carrier materials for levocetirizine.


Assuntos
Polímeros , Água , Polímeros/metabolismo , Liberação Controlada de Fármacos , Cetirizina , Solubilidade , Álcool de Polivinil , Portadores de Fármacos
13.
J Chromatogr A ; 1701: 464051, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37209520

RESUMO

Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.


Assuntos
Polímeros , Água , Polímeros/química , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel , Poliésteres , Cromatografia Líquida de Alta Pressão/métodos
14.
Polymers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236162

RESUMO

In this work, two series of chemically reactive polymers, silane coupling agents (SCAs) and water-soluble polymers, were specifically designed as an additive to improve the ductility of slag geopolymer paste by vibration pressure technique. The influences of organic polymers on the fluidity, rheological behavior, mechanical property, porosity, and toughening mechanism of slag geopolymer were investigated. The polycondensation and bonding characteristics of organic-inorganic products were calculated by 1H liquid nuclear magnetic resonance (NMR) technology and Fourier transform infrared (FT-IR). The polymerization degree of composite geopolymer was evaluated by 29Si NMR and X-ray photoelectron spectroscopy (XPS). The microscopic morphology of the geopolymer matrix was analyzed using scanning electron microscopy (SEM). The results showed that the dosage of the KH570 and PAA-Na with 5 wt% behaved best in improving the flexural strength and the compressive strength of geopolymer in their corresponding organic series, respectively. The addition of polymers decreased the fluidity and the fluidity loss ratio of geopolymer slurry but reduced the harmful pores of hardened geopolymer. The organic polymers acting as bridge-fixed water molecules weakened the repulsion force, and formed a three-dimensional network through molecular interweaving in a geopolymer matrix. Methacryloxy in silane coupling agents and carboxyl group in water-soluble polymers may contribute to the improvement of hydration product structure through strong bonding with C-A-S-H. Microscopic measurements indicated that the addition of KH570 and PAA-Na in geopolymer could form 73.55% and 72.48% Si-O-Si with C-A-S-H gel, higher than the reference, and increase the polycondensation degree of C-A-S-H phase, reflected by the increased generation of Q2 and Q2(1Al) and the longer chain length, leading to a higher densified geopolymer matrix with high ductility.

15.
Polymers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297998

RESUMO

The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.

16.
Aquat Toxicol ; 248: 106200, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605492

RESUMO

Despite the pollution induced by plastics become a well-known and documented problem, bringing many countries to adopt restrictions about their production, commercialization and use, the impact of another emerging category of synthetic polymers, represented by the Water-Soluble Polymers (WSPs), also known as "liquid plastics", is overlooked by scientific community. WSPs are produced in large quantities and used in a wide plethora of applications such as food packaging, pharmaceuticals and personal care products, cosmetics and detergents, with a consequent continuous release in the environment. The aim of this study was the investigation of the possible toxicity induced by polyvinyl alcohol (PVA), one of the main produced and used WSPs, on two freshwater model organisms, the crustacean Daphnia magna and the teleost Danio rerio (zebrafish). We evaluated the effects of solubilized standard PVA powder and PVA-based commercial bags for carp-fishing, at 3 different concentrations (1 µg/L, 0.5 mg/L and 1 mg/L), through the exposures for 14 days of D. magna (daphnids; age < 24 h) and for 5 days of zebrafish embryos (up to 120 h post fertilization - hpf). As acute effects we evaluated the immobilization/mortality of specimens, while for chronic toxicity we selected several endpoints with a high ecological relevance, as the behavioural alteration on swimming performance, in real-time readout, and the activity of monoamine oxidase (MAO), a neuro-enzyme with a potential implication in the organism movement. The results showed the lack of significant effects induced by the selected substances, at all tested concentrations and in both model organisms. However, considering the wide plethora of available WSPs, other investigations are needed to provide the initial knowledge of risk assessment of these compounds contained in some consumer products.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Daphnia , Plásticos/toxicidade , Polímeros/farmacologia , Álcool de Polivinil/toxicidade , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
17.
Pharmaceutics ; 14(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35631511

RESUMO

As drug delivery to the eye has evolved over the last decades, researchers have explored more effective treatments for ocular diseases. Despite this, delivering drugs to the cornea remains one of the most problematic issues in ophthalmology due to the poor permeability of the cornea and tear clearance mechanisms. In this study, four different types of polyaphron formulations are prepared with 10% poloxamer 188 (P188), 10% poly(2-ethyl-2-oxazoline), 1% polyquaternium 10, and 3% sodium carboxymethylcellulose solutions mixed with 1% Brij® L4 in a caprylic/capric triglycerides solution. Their physicochemical characteristics, rheological properties, and stability are assessed. Additionally, a polyaphron with 3% polyquaternium 10 was prepared for the assessment of ex vivo corneal retention along with four other polyaphrons. The best retention on the ex vivo cornea was displayed by the 3% polyquaternium 10-based formulation. The 10% poloxamer 188 along with 1% polyquaternium 10-based polyaphrons appeared to be the most stable among the four prepared formulations. A toxicological evaluation of these formulations was performed using a slug mucosal irritation test and bovine corneal opacity and permeability assay, with all four polyaphrons proving good biocompatibility with ocular tissues. The developed drug delivery systems demonstrated an excellent potential for ocular drug delivery.

18.
Ecotoxicol Environ Saf ; 228: 113016, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34839136

RESUMO

Water-soluble polymers (WSPs) are organic materials that have been used for decades in various applications as part of paints, coatings, adhesives, washing agents, pharmaceuticals, personal care products and cosmetics. However, their ecotoxicity, biodegradability, and overall impact on the environment are still unknown. In this study four polyacrylic acid- based WSPs (three in the solid state and one in the liquid state), which are widely used in cosmetic industry, were tested in terms of their ecotoxicity and biodegradability. The ecotoxicity tests were performed using aquatic plant Lemna minor, microalga Pseudokirchneriella subcapitata, crustacean Daphnia magna, bacterium Allivibrio fischeri, and a mixed bacterial culture of activated sludge (with heterotrophic and nitrifying microorganisms tested separately). All four WSPs had low or moderate effects on the tested organisms at several endpoints. However, the liquid WSP had a specific toxic effect on the bioluminescence of Allivibrio fischeri and the oxygen consumption of nitrifying microorganisms - 100 mg/L caused 73% and 88% inhibition, respectively. Therefore, some WSPs capable of inhibiting nitrifying microorganisms could have implications for the nitrification process in wastewater treatment plants and aquatic ecosystems, despite 100 mg/L being a high tested concentration and probably difficult to reach in wastewater. All investigated WSPs were not biodegradable; therefore, their persistence in the environment could be expected.

19.
Environ Sci Technol ; 55(23): 15843-15852, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788010

RESUMO

The expanding use of chitosan in sewage and sludge treatment processes raises concerns about its potential environmental impacts. However, investigations of the impacts of chitosan on sewage sludge anaerobic digestion where chitosan is present at substantial levels are sparse. This study therefore aims to fill this knowledge gap through both long-term and batch tests. The results showed that 4 g/kg total suspended solid (TSS) chitosan had no acute effects on methane production, but chitosan at 8-32 g/kg TSS inhibited methane production by 7.2-30.3%. Mass balance and metabolism of organic analyses indicated that chitosan restrained the transfer of organic substrates from solid phase to liquid phase, macromolecules to micromolecules, and finally to methane. Further exploration revealed that chitosan suppressed the secretion of extracellular polymeric substances of anaerobes by occupying the connection sites of indigenous carbohydrates and increased the mass transfer resistance between anaerobes and substrates, which thereby lowered the metabolic activities of anaerobes. Although chitosan could be partly degraded by anaerobes, it is much more persistent to be degraded compared with indigenous organics in sludge. Microbial community and key enzyme encoding gene analyses further revealed that the inhibition of chitosan to CO2-dependent methanogenesis was much severer than that to acetate-dependent methanogenesis.


Assuntos
Quitosana , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Metano , Esgotos
20.
AAPS PharmSciTech ; 22(8): 262, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725748

RESUMO

The objective of the study is to develop a quick and simultaneous analysis system for the dissolution of the active pharmaceutical ingredient (API) and the formulation excipient in samples from the dissolution test by UHPLC using the charged aerosol and PDA detectors. The combination of two columns for size-exclusion chromatography (SEC) and the equipment of the charged aerosol detector allowed the quick determination of various water-soluble polymers. Three model sustained-release tablets, each containing a different API of different water solubility (propranolol (soluble), ranitidine (very soluble), and cilostazol (practically insoluble)), were prepared from polyethylene oxide (PEO) matrix to verify the applicability and utility of the analysis system. The dissolution of propranolol was the same as that of PEO, indicating that the diffusion rate of propranolol was consistent with the erosion rate of the PEO and that the dissolution of PRO was based on diffusion. Ranitidine was released faster than PEO, suggesting that ranitidine was diffused through the gel layer of PEO early upon contact with the dissolution medium and before PEO gel erosion. Cilostazol was released slower as compared to PEO, indicating that cilostazol dissolution was based on the polymer's erosion. These results suggested that the analysis system developed in this study is a precise and valid tool to study the dissolution behavior of both APIs and excipients. Optimization of the SEC column for the appropriate separation of APIs and excipients makes the analysis system more efficient and convenient to study the drug release mechanisms and to design formulations.


Assuntos
Química Farmacêutica , Excipientes , Aerossóis , Cromatografia Líquida de Alta Pressão , Preparações de Ação Retardada , Solubilidade , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA