Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ophthalmic Physiol Opt ; 44(4): 746-756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38389207

RESUMO

PURPOSE: The goal was to use SyntEyes modelling to estimate the allowable alignment error of wavefront-guided rigid contact lens corrections for a range of normal and keratoconic eye aberration structures to keep objectively measured visual image quality at or above average levels of well-corrected normal eyes. Secondary purposes included determining the required radial order of correction, whether increased radial order of the corrections further constrained the allowable alignment error and how alignment constraints vary with keratoconus severity. METHODS: Building on previous work, 20 normal SyntEyes and 20 keratoconic SyntEyes were fitted with optimised wavefront-guided rigid contact lens corrections targeting between three and eight radial orders that drove visual image quality, as measured objectively by the visual Strehl ratio, to near 1 (best possible) over a 5-mm pupil for the aligned position. The resulting wavefront-guided contact lens was then allowed to translate up to ±1 mm in the x- and y-directions and rotate up ±15°. RESULTS: Allowable alignment error changed as a function of the magnitude of aberration structure to be corrected, which depends on keratoconus severity. This alignment error varied only slightly with the radial order of correction above the fourth radial order. To return the keratoconic SyntEyes to average levels of visual image quality depended on maximum anterior corneal curvature (Kmax). Acceptable tolerances for misalignment that returned keratoconic visual image quality to average normal levels varied between 0.29 and 0.63 mm for translation and approximately ±6.5° for rotation, depending on the magnitude of the aberration structure being corrected. CONCLUSIONS: Allowable alignment errors vary as a function of the aberration structure being corrected, the desired goal for visual image quality and as a function of keratoconus severity.


Assuntos
Lentes de Contato , Topografia da Córnea , Ceratocone , Acuidade Visual , Humanos , Ceratocone/fisiopatologia , Ceratocone/diagnóstico , Topografia da Córnea/métodos , Adulto , Feminino , Masculino , Acuidade Visual/fisiologia , Adulto Jovem , Aberrações de Frente de Onda da Córnea/fisiopatologia , Aberrações de Frente de Onda da Córnea/diagnóstico , Refração Ocular/fisiologia , Córnea/diagnóstico por imagem , Córnea/fisiopatologia
2.
J Biophotonics ; 16(12): e202300104, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37556187

RESUMO

Optical microscopes can have limited resolution due to aberrations caused by samples and sample holders. Using deformable mirrors and wavefront sensorless optimization algorithms can correct these aberrations, but the correction is limited to a small area of the field of view. This study presents an adaptive optics method that uses a series of plug-and-play deformable lenses for large field of view wavefront correction. A direct wavefront measurement method using the spinning sub-pupil aberration measurement technique is combined with correction based on the deformable lenses. Experimental results using fluorescence microscopy with a wide field and a light sheet fluorescence microscope show that the proposed method can achieve detection and correction over an extended field of view with a compact transmissive module placed in the detection path of the microscope. This method could improve the resolution and accuracy of imaging in a variety of fields, including biology and materials science.


Assuntos
Lentes , Óptica e Fotônica , Microscopia/métodos
3.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371522

RESUMO

X-ray single-grating interferometry was applied to conduct accurate wavefront corrections for hard X-ray nanofocusing mirrors. Systematic errors in the interferometer, originating from a grating, a detector, and alignment errors of the components, were carefully examined. Based on the measured wavefront errors, the mirror shapes were directly corrected using a differential deposition technique. The corrected X-ray focusing mirrors with a numerical aperture of 0.01 attained two-dimensionally diffraction-limited performance. The results of the correction indicate that the uncertainty of the wavefront measurement was less than λ/72 in root-mean-square value.

4.
J Synchrotron Radiat ; 27(Pt 6): 1518-1527, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147177

RESUMO

A refractive phase corrector optics is proposed for the compensation of fabrication error of X-ray optical elements. Here, at-wavelength wavefront measurements of the focused X-ray beam by knife-edge imaging technique, the design of a three-dimensional corrector plate, its fabrication by 3D printing, and use of a corrector to compensate for X-ray lens figure errors are presented. A rotationally invariant corrector was manufactured in the polymer IP-STM using additive manufacturing based on the two-photon polymerization technique. The fabricated corrector was characterized at the B16 Test beamline, Diamond Light Source, UK, showing a reduction in r.m.s. wavefront error of a Be compound refractive Lens (CRL) by a factor of six. The r.m.s. wavefront error is a figure of merit for the wavefront quality but, for X-ray lenses, with significant X-ray absorption, a form of the r.m.s. error with weighting proportional to the transmitted X-ray intensity has been proposed. The knife-edge imaging wavefront-sensing technique was adapted to measure rotationally variant wavefront errors from two different sets of Be CRL consisting of 98 and 24 lenses. The optical aberrations were then quantified using a Zernike polynomial expansion of the 2D wavefront error. The compensation by a rotationally invariant corrector plate was partial as the Be CRL wavefront error distribution was found to vary with polar angle indicating the presence of non-spherical aberration terms. A wavefront correction plate with rotationally anisotropic thickness is proposed to compensate for anisotropy in order to achieve good focusing by CRLs at beamlines operating at diffraction-limited storage rings.

5.
Micromachines (Basel) ; 8(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30400423

RESUMO

Micro-opto-electro-mechanical systems (MOEMS) Deformable Mirrors (DM) are key components for next generation optical instruments implementing innovative adaptive optics systems, both in existing telescopes and in the future ELTs. Characterizing these components well is critical for next generation instruments. This is done by interferometry, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo. We use a compact cryo-vacuum chamber designed for reaching 10⁻6 mbar and 160 K in front of our custom Michelson interferometer, which is able to measure performance of the DM at actuator/segment level and at the entire mirror level, with a lateral resolution of 2 µm and a sub-nanometer z-resolution. We tested the PTT 111 DM from Iris AO: an array of single crystalline silicon hexagonal mirrors with a pitch of 606 µm, able to move in tip, tilt, and piston (stroke 5⁻7 µm, tilt ±5 mrad). The device could be operated successfully from ambient to 160 K. An additional, mainly focus-like, 500 nm deformation of the entire mirror is measured at 160 K; we were able to recover the best flat in cryo by correcting the focus and local tip-tilts on all segments, reaching 12 nm rms. Finally, the goal of these studies is to test DMs in cryo and vacuum conditions as well as to improve their architecture for stable operation in harsh environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA