Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genes (Basel) ; 15(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202409

RESUMO

Phosphorus is critical for plant growth but often becomes less accessible due to its precipitation with cations in soil. Fabaceae, a diverse plant family, exhibits robust adaptability and includes species like Lupinus albus, known for its efficient phosphorus utilization via cluster roots. Here, we systematically identified phosphorus-utilization-efficiency (PUE) gene families across 35 Fabaceae species, highlighting significant gene amplification in PUE pathways in Fabaceae. Different PUE pathways exhibited variable amplification, evolution, and retention patterns among various Fabaceae crops. Additionally, the number of homologous genes of the root hair development gene RSL2 in L. albus was far more than that in other Fabaceae species. Multiple copies of the RSL2 gene were amplified and retained in L. albus after whole genome triplication. The gene structure and motifs specifically retained in L. albus were different from homologous genes in other plants. Combining transcriptome analysis under low-phosphorus treatment, it was found that most of the homologous genes of RSL2 in L. albus showed high expression in the cluster roots, suggesting that the RSL2 gene family plays an important role in the adaptation process of L. albus to low-phosphorus environments and the formation of cluster roots.


Assuntos
Regulação da Expressão Gênica de Plantas , Lupinus , Fósforo , Proteínas de Plantas , Raízes de Plantas , Fósforo/metabolismo , Lupinus/genética , Lupinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Fabaceae/genética , Fabaceae/metabolismo , Família Multigênica , Filogenia , Genes de Plantas
2.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062943

RESUMO

Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.


Assuntos
Regulação da Expressão Gênica de Plantas , Lupinus , Fósforo , Transdução de Sinais , Sacarose , Lupinus/metabolismo , Lupinus/genética , Sacarose/metabolismo , Fósforo/metabolismo , Fósforo/deficiência , Deficiências de Ferro , Transcriptoma , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Adaptação Fisiológica/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Ferro/metabolismo
3.
Plant Physiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805210

RESUMO

Under phosphorus (P) deficiency, white lupin (Lupinus albus L.) forms specialized root structure, called cluster root (CR), to improve soil exploration and nutrient acquisition. Sugar signaling is thought to play a vital role in the development of CR. Trehalose and its associated metabolites are the essential sugar signal molecules that link growth and development to carbon metabolism in plants, however, their roles in the control of CR are still unclear. Here, we investigated the function of the trehalose metabolism pathway by pharmacological and genetic manipulation of the activity of trehalase in white lupin, the only enzyme that degrades trehalose into glucose. Under P deficiency, validamycin A treatment, which inhibits trehalase, led to the accumulation of trehalose and promoted the formation of CR with enhanced organic acid production, whereas overexpression of the white lupin TREHALASE1 (LaTRE1) led to decreased trehalose levels, lateral rootlet density, and organic acid production. Transcriptomic and virus-induced gene silencing (VIGS) results revealed that LaTRE1 negatively regulates the formation of CRs, at least partially, by the suppression of LaLBD16, whose putative ortholog in Arabidopsis (Arabidopsis thaliana) acts downstream of ARF7- and ARF19-dependent auxin signaling in lateral root formation. Overall, our findings provide an association between the trehalose metabolism gene LaTRE1 and CR formation and function with respect to organic acid production in white lupin under P deficiency.

4.
Plants (Basel) ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592821

RESUMO

Lupin species provide essential nutrients and bioactive compounds. Within pulses, they have one of the highest contents of proteins and fibers and are among the poorest in carbohydrates. The Mediterranean region is an important cradle area of the origin and domestication of cultivated white lupin (Lupinus albus L.). In this work, we present the characterization of 19 white lupin landraces collected from several sites in southern Italy, characterized by different pedoclimatic conditions. The protein contents and electrophoretic patterns, total polyphenols, phytic acid, lipids and phosphorous content, and reducing and anti-tryptic activities have been determined for each landrace. The relationships of the compositional characteristics, the area of origin of landraces and between compositional characteristics and thermo-pluviometric trends that occurred in the genotype comparison field during the two-year period between 2019 and 2020 are compared and discussed. From a nutritional point of view, some of the analyzed landraces differ from the commercial reference. The panel of molecular analyses performed can help in building an identity card for the grain to rapidly identify those varieties with the desired characteristics.

5.
Nat Prod Res ; 38(1): 164-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-35921531

RESUMO

We assessed the presence of V, Cr, Ni, Cu, Zn, As, Se, Sb, Cd, and Pb in white lupin samples cultivated in Southern Italy by the validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The ICP-MS method validation showed satisfactory values of linearity (r2 > 0.999), recovery (87.4-100.7%), repeatability, and reproducibility values. Zinc was the most abundant element; showing mean concentrations of 0.778 ± 0.09 mg/Kg wet weight (w.w.) and a maximum of 1.013 mg/Kg w.w., followed by copper (0.191 ± 0.05 mg/Kg w.w.). Among the non-essential elements, important levels of cadmium were found (0.017 ± 0.004 mg/Kg w.w.), with 28% exceeding the limits set by the EU Regulation. The results of this work confirm the role of white lupins and other legumes in reducing the pH of the soil, increasing the exchangeable forms of Cd. This work also provides the first data on the nutritional and antinutritional properties of white lupins cultivated in Italy.


Assuntos
Lupinus , Oligoelementos , Cádmio , Reprodutibilidade dos Testes , Cobre , Itália
6.
Nat Prod Res ; : 1-5, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37674402

RESUMO

In this work we examined the contents of 14 polyphenols in white lupin (Lupinus albus L.) samples cultivated in Southern Italy by the optimisation and validation of a LC-HRMS method. The validation of the LC-HRMS method showed linearity results r2 > 0.989 and recovery values between 71 and 119% for a very wide range of concentrations. Ellagic acid was the most abundant polyphenol, with mean concentrations of 16271.86 ± 19798.53 µg/Kg, followed by apigenin (2749.51 ± 889.95 µg/Kg). A significant variability in ellagic acid contents was found between the areas of cultivation examined (p < 0.05). As far as we know, this work provides the first data on the polyphenols contents of white lupins cultivated in Italy. The comparison with other study confirms the role of the cultivation area for the determination of the polyphenol's contents. The study also confirms white lupins as a promising source of antioxidant and anti-inflammatory substances in a balanced diet.

7.
Food Chem ; 426: 136622, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356243

RESUMO

The demand for high-quality and sustainable protein sources is on the rise. Lupin is an emerging plant-based source of protein with health-enhancing properties; however, the allergenic potential of lupins limits their widespread adoption in food products. A combination of discovery and targeted quantitative proteome measurements was used to investigate the impact of solid-state fermentation induced by Rhizopus oligosporus on the proteome composition and allergenic protein abundances of white lupin seed. In total, 1,241 proteins were uniquely identified in the fermented sample. Moreover, the effectiveness of the solid-state fermentation in reducing the abundance of the tryptic peptides derived from white lupin allergens was demonstrated. Comparably, a greater decrease was noted for the major white lupin allergen based on ß-conglutin peptide abundances. Hence, conventional solid-state fermentation processing can be beneficial for reducing the potential allergenicity of lupin-based foods. This finding will open new avenues for unlocking the potential of this under-utilised legume.


Assuntos
Alérgenos , Lupinus , Alérgenos/análise , Proteoma/análise , Fermentação , Lupinus/química , Peptídeos/metabolismo , Sementes/química
8.
Z Naturforsch C J Biosci ; 78(7-8): 317-325, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37114885

RESUMO

The study was conducted to find new adaptive commercial sweet white lupin (Lupinus albus L.) varieties and evaluate the effect of inoculum on herbage and seed yields of white and blue lupin varieties in Ethiopia for two growing seasons in two locations. For the experiment a factorial arrangement (seven variety * two inoculation) in a randomized complete block design with three replication was used. Three sweet blue (Bora, Sanabor and Vitabor), three sweet white (Dieta, Energy and Feodora) and one bitter white local landrace lupin varieties were tested in the experiment. Analysis of variance was done using the general linear model procedure in SAS. The effects of location and inoculum were insignificant (P ≥ 0.0761) on yield and yield parameters. The effect of variety was observed (P ≤ 0.035) only on plant height, fresh biomass yield and thousand seed weight in both seasons except for fresh biomass yield in season two. However, its effect on other parameters was not shown (P ≥ 0.134) in both growing seasons or only shown in either season. The mean dry matter yield of all varieties was 2.45 ton per ha. However, sweet blue entries performed better than white entries. The mean seed yield of blue sweet lupin entries and white local check was 2.6 ton per ha. Sweet blue and white local landrace varieties were found tolerant while, commercial sweet white lupin varieties were susceptible for anthracnose and fusarium diseases that occurred immediately after flowering. As a result imported commercial sweet white varieties failed to give seed yield. Developing adaptive, disease resistant and high yielding sweet white lupin through crossing the local and commercial varieties and looking for species specific inoculum should be the future research agendas.


Assuntos
Lupinus , Lupinus/crescimento & desenvolvimento , Etiópia
9.
Microorganisms ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36838291

RESUMO

Oilseed rape is sensitive to soil phosphorus deficiencies. In contrast, white lupin is widely used as a model plant because it has efficient phosphorus utilization. Therefore, soil fertility and microbial composition in the rhizospheres of oilseed rapes and root exudate metabolites were compared under monocropping and intercropping systems. The main purpose was to explore whether the phosphorus absorption of rapeseed can be promoted by intercropping with white lupine. In comparison with oilseed rape monoculture (RR), the results showed that the contents of soil-available phosphorus, microbial biomass and phosphorus in the rhizospheres of oilseed rapes in the intercropping system (RL) were all higher than those of RR. Meanwhile, in comparison with RR, not only phosphorus-solubilizing bacteria, such as Streptomyces, Actinomadura and Bacillus, but also phosphorus-solubilizing fungi, such as Chaetomium, Aspergillus, Penicillium, were enriched in the rhizospheres of the oilseed rape under the RL system. Moreover, more abundant soil bacterial functions, organic acids and metabolites were also detected in root exudates of the oilseed rapes under the RL system. All of the above results suggest that soil phosphorus availability in the rhizospheres of oilseed rape could be improved by intercropping with white lupin. Additionally, soil phosphorus-solubilizing microorganisms, that are enriched in the rhizospheres of oilseed rapes under RL systems, have an important function in the improvement of phosphorus absorption of rapeseed by intercropping with white lupin.

10.
New Phytol ; 237(4): 1320-1332, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336781

RESUMO

Cluster roots of white lupin are induced by low phosphorus (LP) to efficiently access unavailable P, but how soilborne microbes are associated with cluster root formation (CRF) is unclear. We investigated the roles of soilborne bacteria in CRF response to LP by high-throughput sequencing and root-bacteria interactions. Cluster root number was significantly decreased in plants grown in sterilized soil compared with nonsterilized soil. Proteobacteria was enriched in CR, as shown by microbiome analysis of soil (bulk, rhizosphere, and rhizosheath) and roots (main, lateral, and CR). Large-scale gene expression level implicated ethylene mediation in CRF. Klebsiella pneumoniae (P7), a soilborne bacterium belonging to Proteobacteria, was isolated from CR. Among 11 isolated strains, P7 exhibited the highest 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity; this enzyme inhibits the biosynthesis of ethylene in plants by the cleavage of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and promotes CRF under LP. We constructed an ACCD-deficit mutant accd in the P7 genetic background. The loss-of-function mutation failed to promote CRF under LP conditions. Also, auxin responses may be involved in K. pneumoniae-ethylene-mediated CRF. Overall, we propose that the soilborne bacterium K. pneumoniae promotes CRF of white lupin in response to LP by ethylene mediation.


Assuntos
Klebsiella pneumoniae , Raízes de Plantas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Raízes de Plantas/metabolismo , Etilenos/metabolismo , Bactérias/metabolismo , Solo , Fósforo/metabolismo
11.
Front Plant Sci ; 14: 1231777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162308

RESUMO

Introduction: Lupins and other legumes have been considered as alternative plant-based protein sources to soybeans for both humans and livestock. Furthermore, they can contribute to more sustainable agricultural systems. The productivity and chemical composition of legumes is highly variable between species, cultivars, and with the edaphoclimatic conditions. Methods: This work evaluated the adaptability of seven Lupinus cultivars in two different sowing locations, during two consecutive years, through the characterization of their seed, as a means of investigating their suitability to be used as a source of food and/or feed. Results and discussion: Lupinus angustifolius cv. Tango and Lupinus luteus cv. Acos were the most stable genotypes across the environments when considering the seed and protein production, while L. luteus cv. Alburquerque and L. luteus cv. Mister showed less variation in the total alkaloid content across the environments. The edaphoclimatic conditions affected seed and protein yields, as higher rainfall resulted in high productivity. The lower temperatures observed in the first year at both locations caused a reduction in the production of alkaloids in L. luteus cv. Acos and Cardiga. Due to the high alkaloid content of some of the studied cultivars their use as food or feed can pose some safety concerns. However, these cultivars can have high levels of resistance to herbivore and insect attacks, which can be of the utmost importance for the use of these crops for recovering poor or exhausted soils.

12.
Plant J ; 112(5): 1127-1140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178138

RESUMO

Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan-I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.


Assuntos
Arabidopsis , Lupinus , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Lupinus/genética , Arabidopsis/genética , Pectinas , Plantas
13.
Plants (Basel) ; 11(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015391

RESUMO

White lupin seed is a unique legume rich in protein and fiber contents, as well as phytochemicals with health potential that contributes to a reduced risk of dyslipidemia, obesity and intestinal dysfunction. This study was focused on the effect of the year on the contents of caffeic acid, 4-hydroxybenzoic acid, trans-ferulic, trans-p-coumaric, quercetin, myricetin, kaempferol, apigenin and genistein, as well as the antioxidant activity and total polyphenols, of seeds of eleven varieties (Lupine albus). The contents of individual phenolic substances were determined by high-performance liquid chromatography-HPLC. The total content of polyphenols and the antioxidant activity were determined spectrophotometrically. The results show that the lowest contents of phenolic acids were found in the seeds from 2018. The caffeic acid and trans-ferulic acid were the most represented among all phenolic acids, during all 3 monitored years (2017, 2018, and 2019). Our results confirm the significant influence of the year of cultivation on the bioactive substances' content in the seeds, and this can be potentially useful for the appropriate selection of locations for lupine growers in Slovakia, taking into account the climatic conditions of the given location. This study provides information about a legume that is underutilized in human nutrition, which may be a valuable source of bioactive substances.

14.
Environ Sci Pollut Res Int ; 29(38): 57172-57189, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349058

RESUMO

This study presents how phosphate (P) availability and intercropping may influence the migration of rare earth elements (REEs) in legume-grass associations. In a replacement model, Hordeum vulgare was intercropped with 11% Lupinus albus and 11% Lupinus angustifolius. They were cultivated on two substrates, A (pH = 7.8) and B (pH = 6.6), and treated with 1.5 g P m-2 or 3 g P m-2. Simultaneously, a greenhouse experiment was conducted to quantify carboxylate release. There, one group of L. albus and L. angustifolius was supplied with either 200 µmol L-1 P or 20 µmol L-1 P. L. albus released higher amounts of carboxylates at low P supply than L. angustifolius, while L. angustifolius showed the opposite response. Plants cultivated on substrate B accumulated substantially higher amounts of nutrients and REE, compared to substrate A. Higher P supply did not influence the leaf and stem P concentrations of H. vulgare. Addition of P decreased REE accumulation in barley monocultures on alkaline soil A. However, when H. vulgare was cultivated in mixed culture with L. angustifolius on alkaline substrate A with high P supply, the accumulation of REE in H. vulgare significantly increased. Conversely, on acidic substrate B, intercropping with L. albus decreased REE accumulation in H. vulgare. Our findings suggest a predominant effect of soil properties on the soil-plant transfer of REEs. However, in plant communities and within a certain soil environment, interspecific root interactions determined by species-specific strategies related to P acquisition in concert with the plant's nutrient supply impact REE fluxes between neighbouring plants.


Assuntos
Hordeum , Lupinus , Metais Terras Raras , Ácidos Carboxílicos , Lupinus/química , Fósforo , Raízes de Plantas , Solo
15.
Plant Cell Rep ; 41(2): 415-430, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34851457

RESUMO

KEY MESSAGE: 5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.


Assuntos
Enzimas/genética , Enzimas/metabolismo , Flavonoides/metabolismo , Lupinus/metabolismo , Proteínas de Plantas/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Cromatografia Líquida de Alta Pressão , Flavanonas/genética , Flavanonas/metabolismo , Flavonoides/análise , Flavonoides/química , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Genisteína/análise , Genisteína/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Isoflavonas/análise , Isoflavonas/metabolismo , Lupinus/genética , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
16.
J Sep Sci ; 45(2): 401-410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34687586

RESUMO

This study focused on the extraction, purification, and physicochemical characterization of γ-conglutin, a protein present in lupin seeds with properties of reducing blood glucose levels. Total protein was extracted with an alkaline-saline solvent, followed by isoelectric precipitation. Chromatographic purification of the precipitated fraction was performed using a cation exchange supermacroporous cryogel column. Electrophoresis of the eluted fraction from chromatography presented a single band of ∼48 kDa under non-reducing conditions (two bands of ∼30 and ∼17 kDa, under reducing conditions) confirming the success of the purification protocol. Liquid chromatography-tandem mass spectrometry analysis confirmed the identity of the protein as γ-conglutin. The purified γ-conglutin had an isoelectric point of 7.51, ß-sheets prevailing as a secondary structure, and denaturation temperature close to 68°C. The outcome of this work showed that γ-conglutin was obtained with a high degree of purity. The proposed purification protocol is simple and can be easily scaled up.


Assuntos
Lupinus , Cátions/análise , Criogéis , Lupinus/química , Lupinus/metabolismo , Proteínas de Plantas/análise , Sementes/química
17.
Ann Bot ; 129(1): 101-112, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34668958

RESUMO

BACKGROUND AND AIMS: Initiation of cluster roots in white lupin (Lupinus albus) under phosphorus (P) deficiency requires auxin signalling, whereas flavonoids inhibit auxin transport. However, little information is available about the interactions between P deficiency and flavonoids in terms of cluster-root formation in white lupin. METHODS: Hydroponic and aeroponic systems were used to investigate the role of flavonoids in cluster-root formation, with or without 75 µm P supply. KEY RESULTS: Phosphorus-deficiency-induced flavonoid accumulation in cluster roots depended on developmental stage, based on in situ determination of fluorescence of flavonoids and flavonoid concentration. LaCHS8, which codes for a chalcone synthase isoform, was highly expressed in cluster roots, and silencing LaCHS8 reduced flavonoid production and rootlet density. Exogenous flavonoids suppressed cluster-root formation. Tissue-specific distribution of flavonoids in roots was altered by P deficiency, suggesting that P deficiency induced flavonoid accumulation, thus fine-tuning the effect of flavonoids on cluster-root formation. Furthermore, naringenin inhibited expression of an auxin-responsive DR5:GUS marker, suggesting an interaction of flavonoids and auxin in regulating cluster-root formation. CONCLUSIONS: Phosphorus deficiency triggered cluster-root formation through the regulation of flavonoid distribution, which fine-tuned an auxin response in the early stages of cluster-root development. These findings provide valuable insights into the mechanisms of cluster-root formation under P deficiency.


Assuntos
Lupinus , Flavonoides/metabolismo , Flavonoides/farmacologia , Ácidos Indolacéticos/metabolismo , Lupinus/genética , Lupinus/metabolismo , Fósforo/metabolismo , Raízes de Plantas
18.
Plant Cell Environ ; 45(3): 936-954, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34392550

RESUMO

Soil contamination with toxic metalloids, such as arsenic, can represent a substantial human health and environmental risk. Some plants are thought to tolerate soil toxicity using root exudation, however, the nature of this response to arsenic remains largely unknown. Here, white lupin plants were exposed to arsenic in a semi-hydroponic system and their exudates were profiled using untargeted liquid chromatography-tandem mass spectrometry. Arsenic concentrations up to 1 ppm were tolerated and led to the accumulation of 12.9 µg As g-1 dry weight (DW) and 411 µg As g-1 DW in above-ground and belowground tissues, respectively. From 193 exuded metabolites, 34 were significantly differentially abundant due to 1 ppm arsenic, including depletion of glutathione disulphide and enrichment of phytochelatins and coumarins. Significant enrichment of phytochelatins in exudates of arsenic-treated plants was further confirmed using exudate sampling with strict root exclusion. The chemical tolerance toolkit in white lupin included nutrient acquisition metabolites as well as phytochelatins, the major intracellular metal-binding detoxification oligopeptides which have not been previously reported as having an extracellular role. These findings highlight the value of untargeted metabolite profiling approaches to reveal the unexpected and inform strategies to mitigate anthropogenic pollution in soils around the world.


Assuntos
Arsênio , Lupinus , Arsênio/metabolismo , Arsênio/toxicidade , Cumarínicos , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Lupinus/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
19.
BMC Genomics ; 22(1): 723, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615466

RESUMO

BACKGROUND: White lupin (Lupinus albus) is a leguminous crop with elite adaptive ability in phosphorus-deficient soil and used as a model plant for studying phosphorus (P) use. However, the genetic basis of its adaptation to low P (LP) remains unclear. ATPase binding cassette (ABC) transports G subfamily play a crucial role in the transportation of biological molecules across the membrane. To date, identification of this subfamily has been analyzed in some plants, but no systematic analysis of these transporters in phosphorus acquisition is available for white lupin. RESULTS: This study identified 66 ABCG gene family members in the white lupin genome using comprehensive approaches. Phylogenetic analysis of white lupin ABCG transporters revealed six subclades based on their counterparts in Arabidopsis, displaying distinct gene structure and motif distribution in each cluster. Influences of the whole genome duplication on the evolution of L.albABCGs were investigated in detail. Segmental duplications appear to be the major driving force for the expansion of ABCGs in white lupin. Analysis of the Ka/Ks ratios indicated that the paralogs of the L.albABCG subfamily members principally underwent purifying selection. However, it was found that L.albABCG29 was a result of both tandem and segmental duplications. Overexpression of L.albABCG29 in white lupin hairy root enhanced P accumulation in cluster root under LP and improved plant growth. Histochemical GUS staining indicated that L.albABCG29 expression increased under LP in white lupin roots. Further, overexpression of L.albABCG29 in rice significantly improved P use under combined soil drying and LP by improving root growth associated with increased rhizosheath formation. CONCLUSION: Through systematic and comprehensive genome-wide bioinformatics analysis, including conserved domain, gene structures, chromosomal distribution, phylogenetic relationships, and gene duplication analysis, the L.albABCG subfamily was identified in white lupin, and L.albABCG29 characterized in detail. In summary, our results provide deep insight into the characterization of the L.albABCG subfamily and the role of L.albABCG29 in improving P use.


Assuntos
Lupinus , Transportadores de Cassetes de Ligação de ATP/genética , Biologia Computacional , Lupinus/genética , Fósforo , Filogenia
20.
Front Plant Sci ; 12: 738172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557216

RESUMO

White lupin produces cluster roots in response to phosphorus deficiency. Along the cluster root, numerous short rootlets successively appear, creating a spatial and temporal gradient of developmental stages that constitutes a powerful biological model to study the dynamics of the structural and functional evolution of these organs. The present study proposes a fine histochemical, transcriptomic and functional analysis of the rootlet development from its emergence to its final length. Between these two stages, the tissue structures of the rootlets were observed, the course of transcript expressions for the genes differentially expressed was monitored and some physiological events linked to Pi nutrition were followed. A switch between (i) a growing phase, in which a normal apical meristem is present and (ii) a specialized phase for nutrition, in which the rootlet is completely differentiated, was highlighted. In the final stage of its determinate growth, the rootlet is an organ with a very active metabolism, especially for the solubilization and absorption of several nutrients. This work discusses how the transition between a growing to a determinate state in response to nutritional stresses is found in other species and underlines the fundamental dilemma of roots between soil exploration and soil exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA