Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.468
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39011510

RESUMO

Objectives: Blister pack (BP) ingestion poses serious risks, such as gastrointestinal perforation, and accurate localization by computed tomography (CT) is a common practice. However, while it has been reported in vitro that CT visibility varies with the material type of BPs, there have been no reports on this variability in clinical settings. In this study, we investigated the CT detection rates of different BPs in clinical settings. Methods: This single-center retrospective study from 2010 to 2022 included patients who underwent endoscopic foreign body removal for BP ingestion. The patients were categorized into two groups for BP components, the polypropylene (PP) and the polyvinyl chloride (PVC)/polyvinylidene chloride (PVDC) groups. The primary outcome was the comparison of CT detection rates between the groups. We also evaluated whether the BPs contained tablets and analyzed their locations. Results: This study included 61 patients (15 in the PP group and 46 in the PVC/PVDC group). Detection rates were 97.8% for the PVC/PVDC group compared to 53.3% for the PP group, a significant difference (p < 0.01). No cases of BPs composed solely of PP were detected by CT. Blister packs were most commonly found in the upper thoracic esophagus. Conclusions: Even in a clinical setting, the detection rates of PVC and PVDC were higher than that of PP alone. Identifying PP without tablets has proven challenging in clinical. Considering the risk of perforation, these findings suggest that esophagogastroduodenoscopy may be necessary, even if CT detection is negative.

2.
ACS Nano ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086092

RESUMO

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39086318

RESUMO

Nonstoichiometric nickel oxide (NiOx) is one of the very few metal oxides successfully used as hole extraction layer in p-i-n type perovskite solar cells (PSCs). Its favorable optoelectronic properties and facile large-scale preparation methods are potentially relevant for future commercialization of PSCs, though currently low operational stability of PSCs is reported when a NiOx hole extraction layer is used in direct contact with the perovskite absorber. Poorly understood degradation reactions at this interface are seen as cause for the inferior stability, and a variety of interface passivation approaches have been shown to be effective in improving the overall solar cell performance. To gain a better understanding of the processes happening at this interface, we systematically passivated specific defects on NiOx with three different categories of organic/inorganic compounds. The effects on NiOx and the perovskite (MAPbI3) deposited on top were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Here, we find that the perovskite's structural stability and film formation can be significantly affected by the passivation treatment of the NiOx surface. In combination with density functional theory (DFT) calculations, a likely origin of NiOx-perovskite degradation interactions is proposed. The surface passivated NiOx layers were incorporated into MAPbI3-based PSCs, and the influence on device performance and operational stability was investigated by current-voltage (J-V) characterization, impedance spectroscopy (IS), and open circuit voltage decay (OCVD) measurements. Interestingly, we find that a superior structural stability due to interface passivation must not relate to high operational stability. The discrepancy comes from the formation of excess ions at the interface, which negatively impacts all solar cell parameters.

4.
Cureus ; 16(7): e63582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39087177

RESUMO

Background The fabrication of titanium carbide (Ti3C2)-cobalt sulfide (Co3S4)-based biosensors with high sensitivity and selectivity can change the biosensor manufacturing industry completely. Molecular and clinical diagnostics, disease progression monitoring, and drug discovery could utilize these sensors for early biomarker detection. MXene (Ti3C2) is a two-dimensional material with exceptional electrical conductivity, hydrophilicity, great thermal stability, large interlayer spacing, and a high surface area. Ti3C2's remarkable characteristics make it well-suited for biomolecule immobilization and target analyte detection. Co3S4 is a transition metal chalcogenide that has shown great potential in biosensors. Co3S4 nanoparticles (NPs) can potentially enhance Ti3C2 electrocatalytic activity, particularly in amino acid detection. L-arginine is a semi-essential amino acid, and the body frequently uses it to support healthy circulation and plays a crucial role in protein synthesis. We fabricated the Ti3C2-Co3S4 biosensor for L-arginine detection. Aim  This study aims to synthesize and apply Ti3C2-Co3S4 nanocomposites in amino acid biosensing. Materials and methods The Ti3C2 nanosheets were synthesized by the selective removal of an aluminum (Al) layer from the precursor (Ti3AlC2) using hydrofluoric acid (HF). The resulting mixture serves as an etchant, especially targeting the Al layers on Ti3AlC2 while protecting the desired MXene layers at room temperature. Cobalt nitrate hexahydrate was dissolved in deionized water. Sodium hydroxide was added to the cobalt solution and stirred. Thioacetamide was added to the above solution and stirred (Solution B). A mixture of Solution A and Solution B was stirred for 30 minutes. The mixture is transferred to a hydrothermal reactor and maintained at a temperature of 180°C for 12 hours. Once the reaction completes, we cool the resultant mixture to room temperature and then filter it using the washing technique. The sample underwent a 12-hour drying process at 80°C.  Results  This study investigated the use of a biosensor that employed Ti3C2-Co3S4 NPs to detect the concentration of L-arginine. The X-ray diffraction (XRD) shows clear and distinct peaks, which means that the synthesized Ti3C2-Co3S4 nanostructures have a crystalline structure. Scanning electron microscopy (SEM) analysis revealed that the sheetlike structure of synthesized Ti3C2-Co3S4 nanostructures revealed the crystalline morphology. The results of this study show that the Ti3C2-Co3S4 NP-based biosensor can be used to detect L-arginine in a sensitive and selective way. Conclusion  This study investigated the synthesis of Ti3C2-Co3S4 NPs and their ability to detect L-arginine levels and show a distinct correlation between the L-arginine concentration and the fluorescence intensity, demonstrating the biosensor's effectiveness in detecting L-arginine levels.

5.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088001

RESUMO

Owing to their exceptional properties, hard materials such as advanced ceramics, metals and composites have enormous economic and societal value, with applications across numerous industries. Understanding their microstructural characteristics is crucial for enhancing their performance, materials development and unleashing their potential for future innovative applications. However, their microstructures are unambiguously hierarchical and typically span several length scales, from sub-ångstrom to micrometres, posing demanding challenges for their characterization, especially for in situ characterization which is critical to understanding the kinetic processes controlling microstructure formation. This review provides a comprehensive description of the rapidly developing technique of ultra-small angle X-ray scattering (USAXS), a nondestructive method for probing the nano-to-micrometre scale features of hard materials. USAXS and its complementary techniques, when developed for and applied to hard materials, offer valuable insights into their porosity, grain size, phase composition and inhomogeneities. We discuss the fundamental principles, instrumentation, advantages, challenges and global status of USAXS for hard materials. Using selected examples, we demonstrate the potential of this technique for unveiling the microstructural characteristics of hard materials and its relevance to advanced materials development and manufacturing process optimization. We also provide our perspective on the opportunities and challenges for the continued development of USAXS, including multimodal characterization, coherent scattering, time-resolved studies, machine learning and autonomous experiments. Our goal is to stimulate further implementation and exploration of USAXS techniques and inspire their broader adoption across various domains of hard materials science, thereby driving the field toward discoveries and further developments.

6.
Imaging Sci Dent ; 54(2): 207-210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948190

RESUMO

Ameloblastic fibrodentinoma (AFD) is a rare benign odontogenic tumor that resembles an ameloblastic fibroma with dysplastic dentin. This report presents a rare case of mandibular AFD with imaging features in a young patient. Panoramic radiography and computed tomography revealed a well-defined lesion with internal septa and calcified foci, causing inferior displacement of the adjacent molars as well as buccolingual cortical thinning and expansion of the posterior mandible. The lesion was surgically removed via mass excision, and the involved tooth was extracted under general anesthesia. During the 5-year follow-up period, no evidence of recurrence was observed. Radiologic features of AFD typically reveal a moderately to well-defined mixed lesion with varying degrees of radiopacity, reflecting the extent of dentin formation. Radiologists should consider AFD in the differential diagnosis when encountering a multilocular lesion with little dense radiopacity, particularly if it is associated with delayed eruption, impaction, or absence of involved teeth, on radiographic images of young patients.

7.
Imaging Sci Dent ; 54(2): 201-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948191

RESUMO

This report showed a case of temporomandibular joint (TMJ) ankylosis suspected to be associated with ankylosing spondylitis based on the observation of bony ankylosis of the cervical spine on computed tomography (CT) images. A 53-year-old man presented with a chief complaint of difficulty in opening his mouth. His medical history indicated that in his 20s, he became aware of the difficulty in moving his neck. CT revealed marked osteoarthritic changes in the right mandibular condyle, suggesting fibrotic TMJ ankylosis. In addition, bony ankylosis of the cervical vertebral body and facet joints from the axis (C2) to C5 in continuity was observed. CT of the entire spine also showed bony deformity of the sacroiliac joints and bony ankylosis. Based on these findings, ankylosing spondylitis was suspected. The possibility of an ankylosing spondylitis complication should be considered in cases of TMJ ankylosis if bony ankylosis of the cervical spine is observed.

8.
J Orthop ; 57: 17-22, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38948502

RESUMO

Introduction: Short stem prostheses were originally designed for younger and more active patients. In recent years, they have been increasingly offered to older patients. This study evaluates the mid-to long-term survival of a short stem prosthesis and the changes in periprosthetic bone density following implantation of a cementless short hip stem in patients over 60 years of age. Methods: 118 patients aged over 60 received short stem prostheses. Clinical examination included Harris Hip Score (HHS) and Hip Disability and Osteoarthritis Outcome Score (HOOS). 93 patients were followed clinically for at least five years. 53 patients underwent dual-energy x-ray absorptiometry (DXA) and radiographic evaluation. Follow-up intervals were preoperative and postoperative (t0), at approximately six months (t1), at approximately two years (t2), and at approximately five years or later (t3). Results: Over a mean 6.7-year observation period for all 118 patients, one stem revision occurred due to a traumatic periprosthetic stem fracture. The five-year survival rate for the endpoint survival of the Metha® stem in 95 at-risk patients is 99.2%. HHS improved significantly from t0 55.3 ± 11.5 (range 30-79) to t3 95.3 ± 8.6 (range 57-100) at a mean of 8.0 years (p < 0.001). HOOS improved significantly in each subscale (p < 0.001). Bone mineral density (BMD) was available for review in 53 patients after a mean of 7.1 years. BMD increased from t0 to t3 in region of interest (ROI) 3 (+0.4%) and ROI 6 (+2.9%) and decreased in ROI 1 (-10.3%), ROI 2 (-9.8%), ROI 4 (-5.3%), ROI 5 (-3.4%) and ROI 7 (-23.1%). Conclusions: The evaluated short stem prosthesis shows a remarkably high survival rate in elderly patients, accompanied by excellent clinical results. Load transfer measurements show a metaphyseal-diaphyseal pattern with a trend towards increased diaphyseal transfer over the period observed.

9.
Front Vet Sci ; 11: 1357626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948669

RESUMO

An 8-year-old castrated male teddy bear dog presented to our clinic with a persistent cough. The sick dog suffered from vehicular trauma 6 months prior to the visit and had imaging and exploratory laparotomy. Imaging and exploratory laparotomy at the time showed no significant damage. We performed contrast radiography (barium gavage) on the sick dog. Based on the results of a complete contrast radiography (barium gavage), tubular shadows in the thoracic cavity were identified as the small intestine and cecum, and delayed traumatic diaphragmatic hernia with hepatothorax and enterothorax was confirmed with radiographs. Accordingly, the sick dog underwent general anesthesia, manual ventilation and diaphragmatic herniorrhaphy by standard ventral midline abdominal approach. Postoperatively, the dog was given analgesia and antibacterial treatment, and the liver biochemical indexes were monitored to prevent endotoxin. Postoperative radiographs revealed clear contours of thoracic and abdominal organs. The dog moved, ate, and urinated normally within 10 days of the surgery. This case provides a reference for a complete barium meal imaging procedure that clearly shows the position of the organs in the thoracoabdominal cavity after the occurrence of a delayed traumatic diaphragmatic hernia. This paper provides a practical reference for the diagnosis of delayed traumatic diaphragmatic hernia with hepatothorax and enterothorax.

10.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951541

RESUMO

Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb3+), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY). In particular, our investigation reveals a strong correlation between PLQY, LY, particle size, and Tb3+concentration. Our synthetic approach allows precise control over the lateral size and thickness of the Gadox NPLs, resulting in a LY of 50,000 photons/MeV. Flexible scintillating screens fabricated with the solution-processable Gadox NPLs exhibited a 20 lp/mm X-ray spatial resolution, surpassing commercial Gadox scintillators. These high-performance and flexible Gadox NPL-based scintillators enable enhanced X-ray imaging capabilities in medicine and security. Our work provides a framework for designing nanomaterial scintillators with superior spatial resolution and efficiency through precise control of dimensions and dopant concentration.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38952048

RESUMO

BACKGROUND: Sarcopenia is an important indicator of ill health and is linked to increased mortality and a reduced quality of life. Age-associated muscle mass indices provide a critical tool to help understand the development of sarcopenia. This study aimed to develop sex- and age-specific percentiles for muscle mass indices in a Chinese population and to compare those indices with those from other ethnicities using the National Health and Nutrition Examination Survey (NHANES) data. METHODS: Whole-body and regional muscle mass was measured by dual-energy X-ray absorptiometry (DXA) in participants of the China Body Composition Life-course (BCL) study (17 203 healthy Chinese aged 3-60 years, male 48.9%) and NHANES (12 663 healthy Americans aged 8-59 years, male 50.4%). Age- and sex-specific percentile curves were generated for whole-body muscle mass and appendicular skeletal muscle mass using the Generalized Additive Model for Location Scale and Shape statistical method. RESULTS: Values of upper and lower muscle mass across ages had three periods: an increase from age 3 to a peak at age 25 in males (with the 5th and 95th values of 41.5 and 66.4 kg, respectively) and age 23 in females (with the 5th and 95th values of 28.4 and 45.1 kg, respectively), a plateau through midlife (30s-50s) and then a decline after their early 50s. The age at which muscle mass began to decline was 52 years in men with the 5th and 95th percentile values of 43.5 and 64.6 kg, and 51 years in women with the 5th and 95th percentile values of 31.6 and 46.9 kg. Appendicular skeletal muscle mass decreased earlier than whole body muscle mass, especially leg skeletal muscle mass, which decreased slightly after age 49 years in both sexes. In comparison with their US counterparts in the NHANES, the Chinese participants had lower muscle mass indices (all P < 0.001) and reached a muscle mass peak earlier with a lower muscle mass, with the exception of similar values compared with adult Mexican and White participants. The muscle mass growth rate of Chinese children decreased faster than that of other races after the age of 13. CONCLUSIONS: We present the sex- and age-specific percentiles for muscle mass and appendicular skeletal muscle mass by DXA in participants aged 3-60 from China and compare them with those of different ethnic groups in NHANES. The rich data characterize the trajectories of key muscle mass indices that may facilitate the clinical appraisal of muscle mass and improve the early diagnosis of sarcopenia in the Chinese population.

12.
Eur Spine J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955868

RESUMO

OBJECTIVE: This study aimed to develop and validate a predictive model for osteoporotic vertebral fractures (OVFs) risk by integrating demographic, bone mineral density (BMD), CT imaging, and deep learning radiomics features from CT images. METHODS: A total of 169 osteoporosis-diagnosed patients from three hospitals were randomly split into OVFs (n = 77) and Non-OVFs (n = 92) groups for training (n = 135) and test (n = 34). Demographic data, BMD, and CT imaging details were collected. Deep transfer learning (DTL) using ResNet-50 and radiomics features were fused, with the best model chosen via logistic regression. Cox proportional hazards models identified clinical factors. Three models were constructed: clinical, radiomics-DTL, and fusion (clinical-radiomics-DTL). Performance was assessed using AUC, C-index, Kaplan-Meier, and calibration curves. The best model was depicted as a nomogram, and clinical utility was evaluated using decision curve analysis (DCA). RESULTS: BMD, CT values of paravertebral muscles (PVM), and paravertebral muscles' cross-sectional area (CSA) significantly differed between OVFs and Non-OVFs groups (P < 0.05). No significant differences were found between training and test cohort. Multivariate Cox models identified BMD, CT values of PVM, and CSAPS reduction as independent OVFs risk factors (P < 0.05). The fusion model exhibited the highest predictive performance (C-index: 0.839 in training, 0.795 in test). DCA confirmed the nomogram's utility in OVFs risk prediction. CONCLUSION: This study presents a robust predictive model for OVFs risk, integrating BMD, CT data, and radiomics-DTL features, offering high sensitivity and specificity. The model's visualizations can inform OVFs prevention and treatment strategies.

13.
Cochlear Implants Int ; : 1-8, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958389

RESUMO

OBJECTIVES: Proper electrode placement is essential for favorable hearing outcomes following cochlear implantation. Though often used, traditional intraoperative X-ray imaging is time consuming, exposes patients and staff to radiation, and poses interpretational challenges. The Nucleus® SmartNav System, utilizes electrode voltage telemetry (EVT) to analyze the positioning of the electrode array intraoperatively. This study investigates the efficacy of SmartNav in optimizing the efficiency and accuracy of assessing electrode placement. METHODS: This prospective clinical study analyzed placement of 50 consecutive Cochlear Corporation cochlear implants conducted at a single institution between March of 2022 and June of 2023. Placement check of electrode array using SmartNav and X-ray was completed and individually assessed. A comparative analysis of SmartNav and X-ray completion times for electrode placement assessment was conducted. RESULTS: Subjects included nine ears with abnormal anatomy and three reimplants. SmartNav placement check required a total time of 2.12 min compared to X-ray imaging at 14.23 min (p = 1.6E-16, CI 95%). Both SmartNav and X-ray had excellent sensitivity of 100% in identifying appropriate electrode position (p = 1.0). Tip fold-over was identified using both modalities in 3 cases with noted easier interpretation using SmartNav. CONCLUSION: The Nucleus® SmartNav System significantly outperformed traditional X-ray imaging, offering a faster and more straightforward approach to assessing electrode positioning during cochlear implant surgery, thereby enhancing surgical efficiency and patient safety.

14.
Mol Pharm ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958508

RESUMO

Crystalline suspensions of monoclonal antibodies (mAbs) have great potential to improve drug substance isolation and purification on a large scale and to be used for drug delivery via high-concentration formulations. Crystalline mAb suspensions are expected to have enhanced chemical and physical properties relative to mAb solutions delivered intravenously, making them attractive candidates for subcutaneous delivery. In contrast to small molecules, the development of protein crystalline suspensions is not a widely used approach in the pharmaceutical industry. This is mainly due to the challenges in finding crystalline hits and the suboptimal physical properties of the resulting crystallites when hits are found. Modern advances in instrumentation and increased knowledge of mAb crystallization have, however, resulted in higher probabilities of discovering crystal forms and improving their particle properties and characterization. In this regard, physical, analytical characterization plays a central role in the initial steps of understanding and later optimizing the crystallization of mAbs and requires careful selection of the appropriate tools. This contribution describes a novel crystal structure of the antibody pembrolizumab and demonstrates the usefulness of small-angle X-ray scattering (SAXS) for characterizing its crystalline suspensions. It illustrates the advantages of SAXS when used to (i) confirm crystallinity and crystal phase of crystallites produced in batch mode; (ii) confirm crystallinity under various conditions and detect variations in crystal phases, enabling fine-tuning of the crystallizations for phase control across multiple batches; (iii) monitor the physical response and stability of the crystallites in suspension with regard to filtration and washing; and (iv) monitor the physical stability of the crystallites upon drying. Overall, this work highlights how SAXS is an essential tool for mAb crystallization characterization.

15.
Chemistry ; : e202400785, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958609

RESUMO

Organic halogen compounds are cornerstones of applied chemical sciences. Halogen substitution is a smart molecular design strategy adopted to influence reactivity, membrane permeability and receptor interaction. Chiral bioreceptors may restrict the stereochemical requirements in the halo-ligand design. Straightforward (but expensive) catalyzed stereospecific halogenation has been reported. Historically, PCl5 served access to uncatalyzed stereoselective chlorination although the stereochemical outcomes were influenced by steric parameters. Nonetheless, stereochemical investigation of PCl5 reaction mechanism with carbamoyl (RCONHX) compounds has never been addressed. Herein, we provide the first comprehensive stereochemical mechanistic explanation outlining halogenation of carbamoyl compounds with PCl5; the key regioselectivity-limiting nitrilimine intermediate (8-Z.HCl); how substitution pattern influences regioselectivity; why oxadiazole byproduct (P1) is encountered; stereo-electronic factors influencing the hydrazonoyl chloride (P2) production; and discovery of two stereoselectivity-limiting parallel mechanisms (stepwise and concerted) of elimination of HCl and POCl3. DFT calculations, synthetic methodology optimization, X-ray evidence and experimental reaction kinetics study evidence all supported the suggested mechanism proposal (Scheme 2). Finally, we provide mechanism-inspired future recommendations for directing the reaction stereoselectivity toward elusive and stereochemically inaccessible (E)-bis-hydrazonoyl chlorides along with potentially pivotal applications of both (E/Z)-stereoisomers especially in medicinal chemistry and protein modification.

16.
Structure ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959899

RESUMO

LoaP is a member of the universal NusG protein family. Previously, we reported that unlike other characterized homologs, LoaP binds RNA sequence-specifically, recognizing a stem-loop in the 5'-untranslated region of operons it regulates. To elucidate how this NusG homolog acquired this ability, we now determined the co-crystal structure of Thermoanaerobacter pseudethanolicus LoaP bound to its cognate 26-nucleotide dfn RNA element. Our structure reveals that the LoaP C-terminal KOW domain recognizes the helical portion of the RNA by docking into a broadened major groove, while a protruding ß-hairpin of the N-terminal NusG-like domain binds the UNCG tetraloop capping the stem-loop. Major-groove RNA recognition is unusual and is made possible by conserved features of the dfn hairpin. Superposition with structures of other NusG proteins implies that LoaP can bind concurrently to the dfn RNA and the transcription elongation complex, suggesting a new level of co-transcriptional regulation by proteins of this conserved family.

17.
J Mol Model ; 30(8): 247, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960900

RESUMO

BACKGROUND: Cubic perovskite titanium stannous oxide (TiSnO3) is a promising material for various applications due to its functional properties. However, understanding how these properties change under external stress is crucial for its development and optimization. METHOD: This study employed density functional theory calculations to investigate the structural, electronic, optical, thermal, and mechanical properties of TiSnO3 under varying degrees of external static isotropic stress (0-120 GPa). RESULTS: The study reveals a significant decrease in the bandgap of TiSnO3 with increasing stress due to lattice modifications and the formation of delocalized electrons. Partial density of states analysis indicates that Sn and O states play a key role in shaping the electronic band structure. TiSnO3 exhibits increased light absorption with stress, accompanied by a blue shift in absorption peaks, whereas, both polarizability and refractive index decrease with increasing stress. Mechanically, all elastic moduli (bulk, shear, and Young's) show an increase under stress, signifying a stiffening response of the material under stress. Similarly, the Pugh ratio suggests a transition from ductile to brittle behaviour at elevated stress levels. Phonon dispersion calculations indicate the instability of the cubic phase at 0 K. However, a phonon gap emerges at 30 GPa and widens with increasing stress. X-ray diffraction further supports these findings by demonstrating a shift in diffraction peaks towards higher angles with increasing stress, consistent with the applied stress. CONCLUSION: In conclusion, this computational study offers a thorough understanding of how external stress influences the properties of TiSnO3, providing valuable insights for potential applications in various fields.

18.
Subcell Biochem ; 104: 503-530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963498

RESUMO

Invertases, or ß-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a ß-propeller catalytic domain, and a ß-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.


Assuntos
beta-Frutofuranosidase , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/genética , Especificidade por Substrato , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Domínio Catalítico , Modelos Moleculares
19.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958014

RESUMO

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Assuntos
Cristalização , Cristalografia por Raios X/métodos , Cristalografia/métodos , Substâncias Macromoleculares/química
20.
IUCrJ ; 11(Pt 4): 634-642, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958016

RESUMO

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA