Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1725: 464876, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718697

RESUMO

Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Microesferas , Impressão Molecular , Água , Adsorção , Água/química , Ácido 2,4-Diclorofenoxiacético/análise , Ácido 2,4-Diclorofenoxiacético/química , Polímeros/química , Cinética , Polímeros Molecularmente Impressos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA