Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Biochem Pharmacol ; 223: 116169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548244

RESUMO

Sorafenib, an important cancer drug in clinical practice, has caused heart problems such as hypertension, myocardial infarction, and thrombosis. Although some mechanisms of sorafenib-induced cardiotoxicity have been proposed, there is still more research needed to reach a well-established definition of the causes of cardiotoxicity of sorafenib. In this report, we demonstrate that sorafenib is a potent inhibitor of the CYP2J enzyme. Sorafenib significantly inhibited the production of epoxyeicosatrienoic acids (EETs) in rat cardiac microsomes. The in vivo experimental results also showed that after the administration of sorafenib, the levels of 11,12-EET and 14,15-EET in rat plasma were significantly reduced, which was similar to the results of CYP2J gene knockout. Sorafenib decreased the levels of EETs, leading to abnormal expression of mitochondrial fusion and fission factors in heart tissue. In addition, the expression of mitochondrial energy metabolism factors (Pgc-1α, Pgc-1ß, Ampk, and Sirt1) and cardiac mechanism factors (Scn5a and Prkag2) was significantly reduced, increasing the risk of arrhythmia and heart failure. Meanwhile, the increase in injury markers Anp, CK, and CK-MB further confirmed the cardiotoxicity of sorafenib. This study is of great significance for understanding the cardiotoxicity of sorafenib, and is also a model for studying the cardiotoxicity of other drugs that inhibit CYP2J activity.


Assuntos
Cardiotoxicidade , Infarto do Miocárdio , Ratos , Animais , Sorafenibe , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Coração , Infarto do Miocárdio/induzido quimicamente
2.
Lipids Health Dis ; 22(1): 172, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838679

RESUMO

Mead acid (MA, 5,8,11-eicosatrienoic acid) is an n-9 polyunsaturated fatty acid (PUFA) and a marker of essential fatty acid deficiency, but nonetheless generally draws little attention. MA is distributed in various normal tissues and can be converted to several specific lipid mediators by lipoxygenase and cyclooxygenase. Recent pathological and epidemiological studies on MA raise the possibility of its effects on inflammation, cancer, dermatitis and cystic fibrosis, suggesting it is an endogenous multifunctional PUFA. This review summarizes the biosynthesis, presence, metabolism and physiological roles of MA and its relation to various diseases, as well as the significance of MA in PUFA metabolism.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Ácidos Graxos Insaturados , Humanos , Ácidos Graxos Insaturados/metabolismo , Inflamação
3.
Neuron ; 111(19): 2945-2948, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797578

RESUMO

In this issue of Neuron, Nakamura et al.1 report the discovery that neuronally secreted phospholipase PLA2G2E releases dihomo-γ-linolenic acid (DGLA) that generates 15-hydroxy-eicosatrienoic acid (15-HETrE), which in turn induces peptidyl arginine deiminase 4 (PAD4/PADI4) to elicit neuronal pro-survival and pro-reparative events following ischemic brain injury.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Acidente Vascular Cerebral , Humanos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Metabolismo dos Lipídeos , Encéfalo/metabolismo
4.
Nutr Res ; 115: 47-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300953

RESUMO

It is hypothesized that plasma proportion of selected fatty acids (FAs) and dietary habits are linked with the risk of cardiovascular disease (CVD) in postmenopausal women. Therefore, this study was designed to determine the association of plasma FA composition and markers of dietary habits with an atherogenic index of plasma (AIP), a predictor of CVD risk in postmenopausal women. In total, 87 postmenopausal women with an average age of 57 ± 7 years were recruited and their dietary intake, anthropometric and biochemical parameters, and FA status in total plasma lipid proportions were determined, showing that 65.5% of the participants had a high risk of CVD according to their AIP value. After adjusting for some confounders (age, body mass index, and physical activity level), the risk of CVD was only positively associated with the frequency of consumption of animal fat spreads (butter and lard) of terrestrial origin. Regarding the FA profile, CVD risk was positively associated with the percentages of vaccenic acid, dihomo-γ-linolenic acid, and monounsaturated fatty acids (MUFA; mainly n-7) in total FA, as well as the MUFA/SFA ratio in total plasma and stearoyl-CoA desaturase-16 activity (16:1/16:0 ratio). In contrast, the risk of CVD was negatively associated with percentages of α-linolenic acid, total polyunsaturated fatty acids (PUFA), and PUFA/MUFA ratio in total plasma lipid, and the estimated activity of Δ5-desaturase (20:4/20:3 n-6 ratio). These results support the current recommendations to decrease the frequency of animal fat spread intake because it is associated with a reduced CVD risk based on AIP in postmenopausal women. In accordance with these plasma percentages of ALA, vaccenic acid, dihomo-γ-linolenic acid, PUFA, PUFA/MUFA ratio, and 16:1/16:0 ratio may be important parameters in CVD risk assessment.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos , Feminino , Humanos , Ácido 8,11,14-Eicosatrienoico , Doenças Cardiovasculares/etiologia , Pós-Menopausa , Gorduras na Dieta , Ácidos Graxos Insaturados , Comportamento Alimentar
5.
Toxicol Appl Pharmacol ; 473: 116610, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385478

RESUMO

Cytochrome P450 2J2 (CYP2J2) enzyme is widely expressed in aortic endothelial cells and cardiac myocytes and affects cardiac function, but the underlying mechanism is still unclear. Based on CYP2J knockout (KO) rats, we have directly studied the metabolic regulation of CYP2J on cardiac function during aging. The results showed that CYP2J deficiency significantly reduced the content of epoxyeicosatrienoic acids (EETs) in plasma, aggravated myocarditis, myocardial hypertrophy, as well as fibrosis, and inhibited the mitochondrial energy metabolism signal network Pgc-1α/Ampk/Sirt1. With the increase of age, the levels of 11,12-EET and 14,15-EET in plasma of KO rats decreased significantly, and the heart injury was more serious. Interestingly, we found that after CYP2J deletion, the heart initiated a self-protection mechanism by upregulating cardiac mechanism factors Myh7, Dsp, Tnni3, Tnni2, and Scn5a, as well as mitochondrial fusion factors Mfn2 and Opa1. However, this protective effect disappeared with aging. In conclusion, CYP2J deficiency not only reduces the amount of EETs, but also plays a dual regulatory role in cardiac function.


Assuntos
Citocromo P-450 CYP2J2 , Traumatismos Cardíacos , Ratos , Animais , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Células Endoteliais/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Miócitos Cardíacos , Traumatismos Cardíacos/metabolismo
6.
Bioresour Technol ; 383: 129231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244310

RESUMO

Omega-6 polyunsaturated fatty acids (ω6-PUFAs), such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), are indispensable nutrients for human health. Harnessing the lipogenesis pathway of Yarrowia lipolytica creates a potential platform for producing customized ω6-PUFAs. This study explored the optimal biosynthetic pathways for customized production of ω6-PUFAs in Y. lipolytica via either the Δ6 pathway from Mortierella alpina or the Δ8 pathway from Isochrysis galbana. Subsequently, the proportion of ω6-PUFAs in total fatty acids (TFAs) was effectively increased by bolstering the provision of precursors for fatty acid biosynthesis and carriers for fatty acid desaturation, as well as preventing fatty acid degradation. Finally, the proportions of GLA, DGLA and ARA synthesized by customized strains accounted for 22.58%, 46.65% and 11.30% of TFAs, and the corresponding titers reached 386.59, 832.00 and 191.76 mg/L in shake-flask fermentation, respectively. This work provides valuable insights into the production of functional ω6-PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Yarrowia , Humanos , Yarrowia/metabolismo , Ácidos Graxos , Ácido Araquidônico , Ácido gama-Linolênico/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 167: 106740, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119935

RESUMO

Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system. So far, most research has focused on the vasodilatory, anti-inflammatory, anti-apoptotic and mitogenic properties of EETs in the systemic circulation. However, whether EETs could suppress tissue factor (TF) expression and prevent thrombus formation remains unknown. Here we utilized in vivo and in vitro models to investigate the effects and underlying mechanisms of exogenously EETs on LPS induced TF expression and inferior vein cava ligation induced thrombosis. We observed that the thrombus formation rate and the size of the thrombus were greatly reduced in 11,12-EET treated mice,accompanied by decreased TF and inflammatory cytokines expression. Further in vitro studies showed that by enhancing p38 MAPK activation and subsequent tristetraprolin (TTP) phosphorylation, LPS strengthened the stability of TF mRNA and induced increased TF expression. However, by strengthening PI3K-dependent Akt phosphorylation, which acted as a negative regulator of p38-TTP signaling pathway,11,12-EET reduced LPS-induced TF expression in monocytes. In addition, 11,12-EET inhibited LPS-induced NF-κB nuclear translocation by activating the PI3K/Akt pathway. Further study indicated that the inhibitory effect of 11,12-EET on TF expression was mediated by antagonizing LPS-induced activation of thromboxane prostanoid receptor. In conclusion, our study demonstrated that 11,12-EET prevented thrombosis by reducing TF expression and targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate thrombosis related diseases.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Trombose , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Tromboplastina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transdução de Sinais , Citocromo P-450 CYP2J2 , Ácido 8,11,14-Eicosatrienoico/metabolismo , Trombose/tratamento farmacológico , Estabilidade de RNA
8.
Cells ; 12(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899838

RESUMO

Macrophages are highly plastic immune cells that can be reprogrammed to pro-inflammatory or pro-resolving phenotypes by different stimuli and cell microenvironments. This study set out to assess gene expression changes associated with the transforming growth factor (TGF)-ß-induced polarization of classically activated macrophages into a pro-resolving phenotype. Genes upregulated by TGF-ß included Pparg; which encodes the transcription factor peroxisome proliferator-activated receptor (PPAR)-γ, and several PPAR-γ target genes. TGF-ß also increased PPAR-γ protein expression via activation of the Alk5 receptor to increase PPAR-γ activity. Preventing PPAR-γ activation markedly impaired macrophage phagocytosis. TGF-ß repolarized macrophages from animals lacking the soluble epoxide hydrolase (sEH); however, it responded differently and expressed lower levels of PPAR-γ-regulated genes. The sEH substrate 11,12-epoxyeicosatrienoic acid (EET), which was previously reported to activate PPAR-γ, was elevated in cells from sEH-/- mice. However, 11,12-EET prevented the TGF-ß-induced increase in PPAR-γ levels and activity, at least partly by promoting proteasomal degradation of the transcription factor. This mechanism is likely to underlie the impact of 11,12-EET on macrophage activation and the resolution of inflammation.


Assuntos
PPAR gama , Fator de Crescimento Transformador beta , Animais , Camundongos , Ácido 8,11,14-Eicosatrienoico , Ativação de Macrófagos , Macrófagos/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768438

RESUMO

Dihomo-γ-linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from γ-linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Ácidos Graxos Ômega-6 , Inflamação , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Araquidônico , Ácidos Graxos Dessaturases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doença Crônica
10.
Biosci Biotechnol Biochem ; 87(4): 448-457, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36617231

RESUMO

Free dihomo-γ-linolenic acid (DGLA), a polyunsaturated free fatty acid (FFA), can potentially be used to produce eicosanoid pharmaceuticals, such as prostaglandin E1. Previously, we constructed an Aspergillus oryzae mutant strain, named DGLA3, which produced free DGLA at an increased yield by faaA gene disruption and cooverexpression of one elongase and two desaturase genes. In this study, we achieved a further increase. Since FFA production is increased by enhancing the pentose phosphate pathway, we overexpressed a predicted transketolase gene composing the pathway in DGLA3, which consequently increased the free DGLA yield by 1.9-fold to 403 mg/L. Additionally, we disrupted the α-1,3-glucan synthase gene agsB involved in cell-wall biosynthesis, which further increased it by 1.3-fold to 533 mg/L. Overall, the yield increased by 2.5-fold. Free DGLA productivity and biomass increased similarly, but residual glucose concentration decreased. Increased hyphal dispersion appeared to cause additional glucose consumption, resulting in an increase in biomass and yield.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Aspergillus oryzae , Ácido 8,11,14-Eicosatrienoico/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Transcetolase/genética , Transcetolase/metabolismo , Glucanos/metabolismo , Ácidos Graxos não Esterificados/metabolismo
11.
Am J Physiol Renal Physiol ; 324(2): F138-F151, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475868

RESUMO

Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites with biological effects, including antiapoptotic, anti-inflammatory, and antifibrotic functions. Soluble epoxide hydrolase (sEH)-mediated hydrolysis of EETs to dihydroxyeicosatrienoic acids (DHETs) attenuates these effects. Recent studies have demonstrated that inhibition of sEH prevents renal tubulointerstitial fibrosis and inflammation in the chronic kidney disease model. Given the pathophysiological role of the EET pathway in chronic kidney disease, we investigated if administration of EET regioisomers and/or sEH inhibition will promote antifibrotic and renoprotective effects in renal fibrosis following unilateral ureteral obstruction (UUO). EETs administration abolished tubulointerstitial fibrogenesis, as demonstrated by reduced fibroblast activation and collagen deposition after UUO. The inflammatory response was prevented as demonstrated by decreased neutrophil and macrophage infiltration and expression of cytokines in EET-administered UUO kidneys. EET administration and/or sEH inhibition significantly reduced M1 macrophage markers, whereas M2 macrophage markers were highly upregulated. Furthermore, UUO-induced oxidative stress, tubular injury, and apoptosis were all downregulated following EET administration. Combined EET administration and sEH inhibition, however, had no additive effect in attenuating inflammation and renal interstitial fibrogenesis after UUO. Taken together, our findings provide a mechanistic understanding of how EETs prevent kidney fibrogenesis during obstructive nephropathy and suggest EET treatment as a potential therapeutic strategy to treat fibrotic diseases.NEW & NOTEWORTHY Epoxyeicosatrienoic acids (EETs) are cytochrome P-450-dependent antihypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered renoprotective. We found that EET administration and/or soluble epoxide hydrolase inhibition significantly attenuates oxidative stress, renal cell death, inflammation, macrophage differentiation, and fibrogenesis following unilateral ureteral obstruction. Our findings provide a mechanistic understanding of how EETs prevent kidney fibrogenesis during obstructive nephropathy and suggest that EET treatment may be a potential therapeutic strategy to treat fibrotic diseases.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Humanos , Epóxido Hidrolases , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Rim/metabolismo , Eicosanoides/metabolismo , Inflamação , Ácidos Araquidônicos , Ácido 8,11,14-Eicosatrienoico
12.
Front Immunol ; 13: 964901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275708

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multi-organ inflammation and defect, which is linked to many molecule mediators. Oxylipins as a class of lipid mediator have not been broadly investigated in SLE. Here, we applied targeted mass spectrometry analysis to screen the alteration of oxylipins in serum of 98 SLE patients and 106 healthy controls. The correlation of oxylipins to lupus nephritis (LN) and SLE disease activity, and the biomarkers for SLE classification, were analyzed. Among 128 oxylipins analyzed, 92 were absolutely quantified and 26 were significantly changed. They were mainly generated from the metabolism of several polyunsaturated fatty acids, including arachidonic acid (AA), linoleic acid (LA), docosahexanoic acid (DHA), eicosapentanoic acid (EPA) and dihomo-γ-linolenic acid (DGLA). Several oxylipins, especially those produced from AA, showed different abundance between patients with and without lupus nephritis (LN). The DGLA metabolic activity and DGLA generated PGE1, were significantly associated with SLE disease activity. Random forest-based machine learning identified a 5-oxylipin combination as potential biomarker for SLE classification with high accuracy. Seven individual oxylipin biomarkers were also identified with good performance in distinguishing SLE patients from healthy controls (individual AUC > 0.7). Interestingly, the biomarkers for differentiating SLE patients from healthy controls are distinct from the oxylipins differentially expressed in LN patients vs. non-LN patients. This study provides possibilities for the understanding of SLE characteristics and the development of new tools for SLE classification.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Oxilipinas , Ácido 8,11,14-Eicosatrienoico , Ácido Eicosapentaenoico , Alprostadil , Biomarcadores , Ácidos Araquidônicos , Ácidos Linoleicos
13.
PLoS Genet ; 18(9): e1010436, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178986

RESUMO

Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lipids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as an antioxidant, but this has not been tested in animal models. In this study, we used C. elegans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalogens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in both wild type and ether-lipid deficient mutants can be rescued in several ways that change the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids (PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcriptional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our studies reveal important differences in how dietary lipids influence germ cell ferroptosis versus whole-body peroxide-induced oxidative stress. These studies highlight a potentially beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.


Assuntos
Ferroptose , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Éter/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados , Ferroptose/genética , Homeostase/genética , Ferro/metabolismo , Plasmalogênios/metabolismo , Compostos de Vinila , terc-Butil Hidroperóxido/metabolismo
14.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682616

RESUMO

Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by the cytochrome P450-(CYP450)-mediated epoxygenation of arachidonic acid. EETs have numerous biological effects on the vascular system, but aspects including their species specificity make their effects on vascular tone controversial. CYP450 enzymes require the 450-reductase (POR) for their activity. We set out to determine the contribution of endothelial CYP450 to murine vascular function using isolated aortic ring preparations from tamoxifen-inducible endothelial cell-specific POR knockout mice (ecPOR-/-). Constrictor responses to phenylephrine were similar between control (CTR) and ecPOR-/- mice. Contrastingly, sensitivity to the thromboxane receptor agonist U46619 and prostaglandin E2 (PGE2) was increased following the deletion of POR. Ex vivo incubation with a non-hydrolyzable EET (14,15-EE-8(Z)-E, EEZE) reversed the increased sensitivity to U46619 to the levels of CTR. EETs had no effect on vascular tone in phenylephrine-preconstricted vessels, but dilated vessels contracted with U46619 or PGE2. As U46619 acts through RhoA-dependent kinase, this system was analyzed. The deletion of POR affected the expression of genes in this pathway and the inhibition of Rho-GTPase with SAR407899 decreased sensitivity to U46619. These data suggest that EET and prostanoid crosstalk at the receptor level and that lack of EET production sensitizes vessels to vasoconstriction via the induction of the Rho kinase system.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Prostaglandinas , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Dinoprostona , Camundongos , Fenilefrina/farmacologia , Prostaglandinas/metabolismo
15.
Nat Cell Biol ; 24(6): 906-916, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681008

RESUMO

Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Lisossomos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
16.
Thromb Res ; 213: 84-90, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313234

RESUMO

BACKGROUND AND AIMS: The susceptibility vessel sign (SVS) on susceptibility-weighted image, a magnetic resonance imaging technique, reveals thrombi as hypointense signals. We aimed to examine the association between polyunsaturated fatty acid (PUFA) levels and the presence of the SVS and its length in cardioembolism due to atrial fibrillation (AF). METHODS: Consecutive ischemic stroke patients who met the following inclusion criteria were screened: 1) patients with cardioembolism, defined by Trial of ORG 10172 in Acute Stroke Treatment, secondary to AF; 2) onset to door time within 24 h; 3) availability of magnetic resonance images, including susceptibility-weighted images, obtained at our hospital before performing recanalizing therapy; and 4) availability of PUFA measurements on the day of or the day after the hospital visit. We evaluated whether PUFA levels might be associated with the presence of the SVS and its length. RESULTS: We retrospectively screened 1720 consecutive ischemic stroke patients, and included 137 patients (95 (69%) male, median age 73 years) who met the inclusion criteria in the analyses. In binomial logistic regression analysis, lower dihomo-γ-linolenic acid (DGLA) level was associated with the presence of SVS (odds ratio 0.545, 95% confidence interval 0.374 to 0.794, p = 0.002). Multiple linear regression analysis revealed a significant negative association between DGLA levels and SVS length (unstandardized coefficient -7.430, 95% confidence interval -13.256 to -1.603, p = 0.013). CONCLUSION: Low DGLA level is associated with the presence of SVS and its length in patients with cardioembolism secondary to AF.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ácido 8,11,14-Eicosatrienoico , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
17.
Prostaglandins Other Lipid Mediat ; 159: 106620, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091081

RESUMO

Cardiac hypertrophy is a key structural change in diabetic cardiomyopathy, which mechanism is unknown. 14,15-Epoxyeicosatrienoic acid (14,15-EET) generated from arachidonic acid by CYP2J2 has beneficial effects in metabolic syndrome, which also plays vital roles in inflammatory response. Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor superfamily and have three subtypes of α, ß (or δ) and γ. Studies have found that 14,15-EET can perform various biological functions by activating PPARs, but its role in diabetic cardiac hypertrophy is unknown. This study aimed to investigate the role of 14,15-EET-PPARs signaling pathway in the development of diabetic cardiac hypertrophy. Diabetic cardiac hypertrophy was developed by high-fat diet feeding combined with streptozotocin (40 mg/kg/d for 5 days, i.p.) in mice and was induced by glucose at 25.5 mmol/L (high glucose, HG) in H9c2 cells. The decreased level of 14,15-EET and the down-regulated expression of PPARα, PPARß and PPARγ were found following diabetic cardiac hypertrophy in mice. Similarly, both the level of 14,15-EET and the PPARs expression were also reduced in HG-induced hypertrophic cardiomyocytes. Supplementation with 14,15-EET improved the cardiomyocyte hypertrophy and up-regulated PPARs expression, which were nullified by 14,15-EEZE, a 14,15-EET antagonist. Taken together, we conclude that the decreased 14,15-EET is involved in the development of diabetic cardiac hypertrophy through the down-regulation of PPARs.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Cardiomegalia/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Glucose/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo
18.
Neurochem Int ; 154: 105291, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074479

RESUMO

Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 µg; and EET (0.1 µg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.


Assuntos
Neuralgia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Chem Res Toxicol ; 34(12): 2579-2591, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34817988

RESUMO

The usage of cisplatin, a highly potent chemotherapeutic, is limited by its severe nephrotoxicity. Arachidonic acid (ARA)-derived epoxyeicosatrienoic acids (EETs) and soluble epoxide hydrolase (sEH) inhibitors were shown to ameliorate this dose-limiting side effect, but both approaches have some pharmacological limitations. Analogues of EETs are an alternative avenue with unique benefits, but the current series of analogues face concerns regarding their structure and mimetic functionality. Hence, in this study, regioisomeric mixtures of four new ARA alkyl ethers were synthesized, characterized, and assessed as EET analogues against the concentration- and time-dependent toxicities of cisplatin in porcine proximal tubular epithelial cells. All four ether groups displayed bioisostere activity, ranging from marginal for methoxy- (1), good for n-propoxy- (4), and excellent for ethoxy- (2) and i-propoxy- (3). Compounds 2 and 3 displayed cytoprotective effects comparable to that of an EET regioisomeric mixture (5) against high, acute cisplatin exposures but were more potent against low to moderate, chronic exposures. Compounds 2 and 3 (and 5) acted through stabilization of the mitochondrial transmembrane potential and attenuation of reactive oxygen species, leading to reduced phosphorylation of mitogen-activated protein kinases p38 and JNK and decreased activation of caspase-9 and caspase-3. This study demonstrates that alkoxy- groups are potent and more metabolically stable bioisostere alternatives to the epoxide within EETs that enable sEH-independent activity. It also illustrates the potential of ether-based mimics of EETs and other epoxy fatty acids as promising nephroprotective agents to tackle the clinically relevant side effect of cisplatin without compromising its antineoplastic function.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Caspase 3/metabolismo , Caspase 9/metabolismo , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/síntese química , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Cisplatino/antagonistas & inibidores , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos
20.
Respir Res ; 22(1): 291, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774051

RESUMO

BACKGROUND: Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. METHODS: CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. RESULTS: CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. CONCLUSIONS: CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


Assuntos
Ácido 8,11,14-Eicosatrienoico/genética , Citocromo P-450 CYP2J2/genética , Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , RNA/genética , Traumatismo por Reperfusão/genética , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Células Cultivadas , Citocromo P-450 CYP2J2/biossíntese , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA