Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neuroinflammation ; 18(1): 211, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530836

RESUMO

BACKGROUND: Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases. Nevertheless, whether this interaction contributes to pain development remains unanswered. Epoxyeicosatrienoic acids (EETs)/soluble epoxy hydrolase inhibitors (sEHi) are emerging targets that play a significant role in pain and neuroinflammatory regulation. Moreover, recent studies have revealed that EETs are effective in attenuating ER stress. In this study, we hypothesized that ER stress around the stroke site may activate glial cells and lead to further inflammatory cascades, which constitute a positive feedback loop resulting in central sensitization and CPSP. Additionally, we tested whether EETs/sEHi could attenuate CPSP by suppressing ER stress and neuroinflammation, as well as their vicious cycle, in a rat model of CPSP. METHODS: Young male SD rats were used to induce CPSP using a model of thalamic hemorrhage and were then treated with TPPU (sEHi) alone or in combination with 14,15-EET or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, the EET antagonist), tunicamycin (Tm, ER stress inducer), or 4-PBA (ER stress inhibitor). Nociceptive behaviors, ER stress markers, JNK and p38 (two well-recognized inflammatory kinases of mitogen-activated protein kinase (MAPK) signaling) expression, and glial cell activation were assessed. In addition, some healthy rats were intrathalamically microinjected with Tm or lipopolysaccharide (LPS) to test the interaction between ER stress and neuroinflammation in central pain. RESULTS: Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated decreased soluble epoxy hydrolase (sEH) expression, which was accompanied by increased expression of ER stress markers, including BIP, p-IRE, p-PERK, and ATF6. In addition, inflammatory kinases (p-p38 and p-JNK) were upregulated and glial cells were activated. Intrathalamic injection of sEHi (TPPU) increased the paw withdrawal mechanical threshold (PWMT), reduced hallmarks of ER stress and MAPK signaling, and restrained the activation of microglia and astrocytes around the lesion site. However, the analgesic effect of TPPU was completely abolished by 14,15-EEZE. Moreover, microinjection of Tm into the thalamic ventral posterior lateral (VPL) nucleus of healthy rats induced mechanical allodynia and activated MAPK-mediated neuroinflammatory signaling; lipopolysaccharide (LPS) administration led to activation of ER stress along the injected site in healthy rats. CONCLUSIONS: The present study provides evidence that the interaction between ER stress and neuroinflammation is involved in the mechanism of CPSP. Combined with the previously reported EET/sEHi effects on antinociception and neuroprotection, therapy with agents that target EET signaling may serve as a multi-functional approach in central neuropathic pain by attenuating ER stress, excessive neuroinflammation, and subsequent central sensitization. The use of these agents within a proper time window could not only curtail further nerve injury but also produce an analgesic effect.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Estresse do Retículo Endoplasmático/fisiologia , Epóxido Hidrolases/uso terapêutico , Neuralgia/metabolismo , Nociceptividade/fisiologia , Acidente Vascular Cerebral/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Epóxido Hidrolases/farmacologia , Masculino , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Nociceptividade/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Vasodilatadores/antagonistas & inibidores , Vasodilatadores/metabolismo
2.
Neuropharmacology ; 123: 310-321, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526610

RESUMO

Recent studies suggest a role for the arachidonic acid-derived epoxyeicosatrienoic acids (EETs) in attenuating epileptic seizures. However, their effect on neurotransmission has never been investigated in detail. Here, we studied how 11,12- and 14,15 EET affect excitability and excitatory neurotransmission in mouse hippocampus. 11,12 EET (2 µM), but not 14,15 EET (2 µM), induced the opening of a hyperpolarizing K+ conductance in CA1 pyramidal cells. This action could be blocked by BaCl2, the G protein blocker GDPß-S and the GIRK1/4 blocker tertiapin Q and the channel was thus identified as a GIRK channel. The 11,12 EET-mediated opening of this channel significantly reduced excitability of CA1 pyramidal cells, which could not be blocked by the functional antagonist EEZE (10 µM). Furthermore, both 11,12 EET and 14,15 EET reduced glutamate release on CA1 pyramidal cells with 14,15 EET being the less potent regioisomer. In CA1 pyramidal cells, 11,12 EET reduced the amplitude of excitatory postsynaptic currents (EPSCs) by 20% and the slope of field excitatory postsynaptic potentials (fEPSPs) by 50%, presumably via a presynaptic mechanism. EEZE increased both EPSC amplitude and fEPSP slope by 40%, also via a presynaptic mechanism, but failed to block 11,12 EET-mediated reduction of EPSCs and fEPSPs. This strongly suggests the existence of distinct targets for 11,12 EET and EEZE in neurons. In summary, 11,12 EET substantially reduced excitation in CA1 pyramidal cells by inhibiting the release of glutamate and opening a GIRK channel. These findings might explain the therapeutic potential of EETs in reducing epileptiform activity.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hipocampo/efeitos dos fármacos , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Anticonvulsivantes/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
3.
Hepatology ; 64(3): 923-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27312119

RESUMO

UNLABELLED: In cirrhosis, 11,12-epoxyeicosatrienoic acid (EET) induces mesenteric arterial vasodilation, which contributes to the onset of portal hypertension. We evaluated the hemodynamic effects of in vivo inhibition of EET production in experimental cirrhosis. Sixteen control rats and 16 rats with carbon tetrachloride-induced cirrhosis were studied. Eight controls and eight rats with cirrhosis were treated with the specific epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH; 20 mg/kg/day) for 3 consecutive days. Portal blood flow and renal and splenic resistive indexes were calculated through echographic measurements, while portal and systemic pressures were measured through polyethylene-50 catheters. Small resistance mesenteric arteries were connected to a pressure servo controller in a video-monitored perfusion system, and concentration-response curves to phenylephrine and acetylcholine were evaluated. EET levels were measured in tissue homogenates of rat liver, kidney, and aorta, using an enzyme-linked immunosorbent assay. Urinary Na(+) excretion function was also evaluated. In rats with cirrhosis, treatment with MS-PPOH significantly reduced portal blood flow and portal pressure compared to vehicle (13.6 ± 5.7 versus 25.3 ± 7.1 mL/min/100 g body weight, P < 0.05; 9.6 ± 1.1 versus 12.2 ± 2.3 mm Hg, P < 0.05; respectively) without effects on systemic pressure. An increased response to acetylcholine of mesenteric arteries from rats with cirrhosis (50% effect concentration -7.083 ± 0.197 versus -6.517 ± 0.73 in control rats, P < 0.05) was reversed after inhibition of EET production (-6.388 ± 0.263, P < 0.05). In liver, kidney, and aorta from animals with cirrhosis, treatment with MS-PPOH reversed the increase in EET levels. In both controls and rats with cirrhosis, MS-PPOH increased urinary Na(+) excretion. CONCLUSION: In rats with cirrhosis, in vivo inhibition of EET production normalizes the response of mesenteric arteries to vasodilators, with beneficial effects on portal hypertension. (Hepatology 2016;64:923-930).


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Amidas/uso terapêutico , Cirrose Hepática Experimental/tratamento farmacológico , Circulação Esplâncnica/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acetilcolina , Amidas/farmacologia , Animais , Aorta/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hipertensão Portal/tratamento farmacológico , Rim/metabolismo , Fígado/metabolismo , Cirrose Hepática Experimental/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Ratos Wistar , Sódio/metabolismo
4.
Invest Ophthalmol Vis Sci ; 55(10): 7007-13, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25298420

RESUMO

PURPOSE: To investigate the role of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) in retinal blood vessel calibers and vasodilation during flicker light stimulation in humans. METHODS: Twelve healthy nonsmokers participated in a balanced crossover study. Oral fluconazole 400 mg and dispersible aspirin 600 mg were used to inhibit production of EETs and PGs, respectively. Retinal imaging was performed 1 hour after drug ingestion with the Dynamic Vessel Analyzer. Resting calibers of selected vessel segments were recorded in measurement units (MU). Maximum percentage dilations during flicker stimulation were calculated from baseline calibers. We then studied six participants each after fluconazole and aspirin ingestions at 30-minute intervals for 2 hours. Within-subject differences were assessed by ANOVA and Dunnett-adjusted pairwise comparisons with significance taken at P < 0.05. RESULTS: In crossover study participants, mean (SD) arteriole and venule dilations without drug administration were 4.4% (2.0%) and 4.6% (1.7%), respectively. Neither drug affected vasodilation during flicker stimulation. Mean (SD) resting arteriole and venule calibers on no-drug visits were 119.6 (10.6) MU and 145.7 (17.0) MU, respectively. Fluconazole reduced mean (±95% CI) resting venule calibers by 5.1 (4.3) MU. In repeated measures participants, neither drug affected vasodilations, but fluconazole reduced resting venule calibers over 2 hours (P < 0.001). CONCLUSIONS: Epoxyeicosatrienoic acids and prostaglandins are unlikely to be primary mediators of flicker light-induced retinal vasodilation in humans. However, EETs may play a role in the regulation of retinal vascular tone and blood flow under resting physiological conditions.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Luz , Prostaglandinas/metabolismo , Vasos Retinianos/fisiologia , Vasodilatação/efeitos da radiação , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Administração Oral , Estudos Cross-Over , Inibidores do Citocromo P-450 CYP2C9/administração & dosagem , Fluconazol/administração & dosagem , Humanos , Estimulação Luminosa/métodos , Valores de Referência
5.
Am J Physiol Endocrinol Metab ; 307(12): E1097-104, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336524

RESUMO

Skeletal muscle microvascular blood flow (MBF) increases in response to physiological hyperinsulinemia. This vascular action of insulin may facilitate glucose uptake. We hypothesized that epoxyeicosatrienoic acids (EETs), a family of arachadonic, acid-derived, endothelium-derived hyperpolarizing factors, are mediators of insulin's microvascular effects. Contrast-enhanced ultrasound (CEU) was performed to quantify skeletal muscle capillary blood volume (CBV) and MBF in wild-type and obese insulin-resistant (db/db) mice after administration of vehicle or trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (t-AUCB), an inhibitor of soluble epoxide hydrolase that converts EETs to less active dihydroxyeicosatrienoic acids. Similar studies were performed in rats pretreated with l-NAME. CEU was also performed in rats undergoing a euglycemic hyperinsulinemic clamp, half of which were pretreated with the epoxygenase inhibitor MS-PPOH to inhibit EET synthesis. In both wild-type and db/db mice, intravenous t-AUCB produced an increase in CBV (65-100% increase at 30 min, P < 0.05) and in MBF. In db/db mice, t-AUCB also reduced plasma glucose by ∼15%. In rats pretreated with l-NAME, t-AUCB after produced a significant ≈20% increase in CBV, indicating a component of vascular response independent of nitric oxide (NO) production. Hyperinsulinemic clamp produced a time-dependent increase in MBF (19 ± 36 and 76 ± 49% at 90 min, P = 0.026) that was mediated in part by an increase in CBV. Insulin-mediated changes in both CBV and MBF during the clamp were blocked entirely by MS-PPOH. We conclude that EETs are a mediator of insulin-mediated augmentation in skeletal muscle perfusion and are involved in regulating changes in CBV during hyperinsulinemia.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Insulina/farmacologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Animais , Benzoatos/farmacologia , Volume Sanguíneo/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Hiperinsulinismo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia
6.
J Pharmacol Exp Ther ; 350(1): 14-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763066

RESUMO

Cytochrome P450-derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface G(s)-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein-coupled receptor, we assessed 11,12-EET-induced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (±)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (±)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (±)-11,12-EET and 11(R),12(S)-EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (±)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of G(s) in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (±)-11,12-EET. The downregulation of G(q)/11 failed to prevent 11,12-EET-induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a G(s)-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Canais de Cátion TRPC/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Indutores da Angiogênese/farmacologia , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia , Estereoisomerismo , Canal de Cátion TRPC6 , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
J Obstet Gynaecol Res ; 40(3): 661-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24321039

RESUMO

AIM: The aim of the present experimental study was to assess the tocolytic effect of eicosanoids on myometrium from non-pregnant and pregnant rats with or without an induced inflammatory condition. METHODS: Three hundred myometrial rings were obtained by median laparotomy from 50 Sprague-Dawley rats divided into three groups: (i) non-pregnant (n = 15); (ii) pregnant in absence (n = 20); or (iii) pregnant in presence (n = 15) of lipopolysaccharide treatment, timed at 22 days of pregnancy. Spontaneous contractile activities were compared by isometric tension measurements. The effects of epoxy- and hydroxyeicosanoids derived from arachidonic acid as well as specific enzyme inhibitors were assessed. Changes were expressed as percentage of basal activity by calculating the area under the curve as a function of drug concentration and compared to the effect of the vehicle. RESULTS: A decrease in contractile activity ranging 10-25% was observed upon addition of epoxy- and hydroxyeicosanoids. Increasing epoxyeicosanoid bioavailability by inhibiting their degradation induced a tocolytic effect in the non-pregnant group (20%) and in inflammation-induced condition (40%). There was a significant difference in reactivity between groups and pregnancy condition. Semiquantification of metabolic enzymes that produce (cytochrome P-450 epoxygenase) and degrade (soluble epoxide hydrolase) epoxyeicosanoids by western blot analysis revealed that these enzymes were mainly detected in the non-pregnant group. CONCLUSION: Eicosanoids can modify myometrial reactivity and their presence and effects are amplified in non-pregnant and in inflammation-induced condition. Our data suggest that in contrast to prostaglandins, epoxyeicosatrienoic acids are likely involved in the quiescence phase of parturition because they reduce the rhythmic contractile activity of uterine tissues in pregnant rats.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Regulação para Baixo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Modelos Biológicos , Miométrio/metabolismo , Manutenção da Gravidez , Contração Uterina , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Feminino , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Técnicas In Vitro , Miométrio/efeitos dos fármacos , Miométrio/imunologia , Gravidez , Complicações na Gravidez/enzimologia , Complicações na Gravidez/imunologia , Complicações na Gravidez/metabolismo , Ratos Sprague-Dawley , Contração Uterina/efeitos dos fármacos , Doenças Uterinas/enzimologia , Doenças Uterinas/imunologia , Doenças Uterinas/metabolismo
8.
J Mol Cell Cardiol ; 59: 20-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23419451

RESUMO

We previously demonstrated that 11,12 and 14,15-epoxeicosatrienoic acids (EETs) produce cardioprotection against ischemia-reperfusion injury in dogs and rats. Several signaling mechanisms have been implicated in the cardioprotective actions of the EETs; however, their mechanisms remain largely elusive. Since nitric oxide (NO) plays a significant role in cardioprotection and EETs have been demonstrated to induce NO production in various tissues, we hypothesized that NO is involved in mediating the EET actions in cardioprotection. To test this hypothesis, we used an in vivo rat model of infarction in which intact rat hearts were subjected to 30-min occlusion of the left coronary artery and 2-hr reperfusion. 11,12-EET or 14,15-EET (2.5mg/kg) administered 10min prior to the occlusion reduced infarct size, expressed as a percentage of the AAR (IS/AAR), from 63.9±0.8% (control) to 45.3±1.2% and 45.5±1.7%, respectively. A nonselective nitric oxide synthase (NOS) inhibitor, L-NAME (1.0mg/kg) or a selective endothelial NOS inhibitor, L-NIO (0.30mg/kg) alone did not affect IS/AAR but they completely abolished the cardioprotective effects of the EETs. On the other hand, a selective neuronal NOS inhibitor, nNOS I (0.03mg/kg) and a selective inducible NOS inhibitor, 1400W (0.10mg/kg) did not affect IS/AAR or block the cardioprotective effects of the EETs. Administration of 11,12-EET (2.5mg/kg) to the rats also transiently increased the plasma NO concentration. 14,15-EET (10µM) induced the phosphorylation of eNOS (Ser(1177)) as well as a transient increase of NO production in rat cardiomyoblast cell line (H9c2 cells). When 11,12-EET or 14,15-EET was administered at 5min prior to reperfusion, infarct size was also reduced to 42.8±2.2% and 42.6±1.9%, respectively. Interestingly, L-NAME (1.0mg/kg) and a mitochondrial KATP channel blocker, 5-HD (10mg/kg) did not abolish while a sarcolemmal KATP channel blocker, HMR 1098 (6.0mg/kg) and a mitochondrial permeability transition pore (MPTP) opener, atractyloside (5.0mg/kg) completely abolished the cardioprotection produced by the EETs. 14,15-EET (1.5mg/kg) with an inhibitor of MPTP opening, cyclosporin A (CsA, 1.0mg/kg) produced a greater reduction of infarct size than their individual administration. Conversely, an EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5mg/kg) completely abolished the cardioprotective effects of CsA, suggesting a role of MPTP in mediating the EET actions. Taken together, these results suggest that the cardioprotective effects of the EETs in an acute ischemia-reperfusion model are mediated by distinct mediators depending on the time of EET administration. The cardioprotective effects of EETs administered prior to ischemia were regulated by the activation of eNOS and increased NO production, while sarcKATP channels and MPTP were involved in the beneficial effects of the EETs when administered just prior to reperfusion.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Coração/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/uso terapêutico , Animais , Linhagem Celular , Hemodinâmica/fisiologia , Iminas/farmacologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 302(8): H1574-83, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22307677

RESUMO

Arachidonic acid is metabolized to four regioisomeric epoxyeicosatrienoic acids (EETs) by cytochrome P-450. 5,6-, 8,9-, 11,12-, and 14,15-EET are equipotent in relaxing bovine coronary arteries (BCAs). Vasorelaxant effects of EETs are nonselectively antagonized by 14,15-epoxyeicosa-5(Z)-enoic acid. The 11,12-EET analogs, 20-hydroxy-11,12-epoxyeicosa-8(Z)-enoic acid (20-H-11,12-EE8ZE) and 11,12,20-trihydroxyeicosa-8(Z)-enoic acid (11,12,20-THE8ZE) were synthesized and tested for antagonist activity against EET-induced relaxations in BCAs. In U-46619-preconstricted arterial rings, 5,6-, 8,9-, 11,12-, and 14,15-EET caused concentration-dependent relaxations with maximal relaxations ranging from 80 to 96%. Preincubation of arteries with 20-H-11,12-EE8ZE (10(-5) M) inhibited relaxations to 14,15- and 11,12-EET, but not 5,6- and 8,9-EET; however, greatest inhibitory effect was against 11,12-EET (maximal relaxation = 80.6 ± 4.6 vs. 26.7 ± 7.4% without and with 20-H-11,12-EE8ZE, respectively). Preincubation with the soluble epoxide hydrolase inhibitor (tAUCB, 10(-6) M) significantly enhanced the antagonist effect of 20-H-11,12-EE8ZE against 14,15-EET-induced relaxations (maximal relaxation = 86.6 ± 4.4 vs. 27.8 ± 3.3%, without and with 20-H-11,12-EE8ZE and tAUCB) without any change in its effect against 11,12-EET-induced relaxations. In contrast to the parent compound, the metabolite, 11,12,20-THE8ZE (10(-5) M), significantly inhibited relaxations to 11,12-EET and was without effect on other EET regioisomers. Mass spectrometric analysis revealed conversion of 20-H-11,12-EE8ZE to 11,12,20-THE8ZE by incubation with BCA. The conversion was blocked by tAUCB. 14,15-Dihydroxy-eicosa-5Z-enoic acid (a 14,15-EET antagonist), but not 11,12,20-THE8ZE (an 11,12-EET antagonist), inhibited BCA relaxations to arachidonic acid and flow-induced dilation in rat mesenteric arteries. These results indicate that 11,12,20-THE8ZE is a selective antagonist of 11,12-EET relaxations and a useful pharmacological tool to elucidate the function of 11,12-EET in the cardiovascular system.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Vasos Coronários/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Ácido Araquidônico/farmacologia , Bovinos , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/metabolismo , Técnicas In Vitro , Contração Isométrica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Masculino , Espectrometria de Massas , Potenciais da Membrana/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
10.
Circ Res ; 110(6): 808-17, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22354938

RESUMO

RATIONALE: Hyperhomocysteinemia is a risk factor of atherogenesis. Soluble epoxide hydrolase (sEH) is a major enzyme that hydrolyzes epoxyeicosatrienoic acids and attenuates their cardiovascular protective effects. Whether homocysteine (Hcy) regulates sEH and the underlying mechanism remains elusive. OBJECTIVE: To elucidate the mechanism by which Hcy regulates sEH expression and endothelial activation in vitro and in vivo. METHODS AND RESULTS: Hcy treatment in cultured human endothelial cells dose-dependently and time-dependently upregulated sEH mRNA and protein. Hcy increased the expression of adhesion molecules, which was markedly reversed by inhibiting sEH activity. Hcy-induced sEH upregulation is associated with activation of activating transcription factor-6 (ATF6). Bioinformatics analysis revealed a putative ATF6-binding motif in the promoter region of the sEH gene, which was found at a methylation site. Site-directed mutagenesis and chromatin immunoprecipitation assays demonstrated that Hcy treatment or ATF6 overexpression promoted ATF6 binding to the promoter of sEH and increased its activity. Results of methylation-specific polymerase chain reaction revealed that the ATF6 binding site on the sEH promoter was partially methylated and was demethylated with Hcy. SiRNA knockdown of ATF6α or SP1 blocked and ATF6 overexpression and DNA methyltransferase inhibitor mimicked the effect of homocysteine on sEH upregulation. In vivo, immunofluorescence assay revealed elevated expression of sEH and adhesion molecules in the aortic intima of mice with mild hyperhomocysteinemia, which was attenuated by sEH deletion or inhibition. CONCLUSION: ATF6 activation and DNA demethylation may coordinately contribute to Hcy-induced sEH expression and endothelial activation. Inhibition of sEH may be a therapeutic approach for treating Hcy-induced cardiovascular diseases.


Assuntos
Células Endoteliais/enzimologia , Epóxido Hidrolases/metabolismo , Homocisteína/metabolismo , Hiper-Homocisteinemia/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Aorta/citologia , Sequência de Bases , Metilação de DNA/fisiologia , Células Endoteliais/citologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiper-Homocisteinemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Regiões Promotoras Genéticas/fisiologia , Pirenos/farmacologia , RNA Interferente Pequeno/farmacologia , Solubilidade , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
J Cereb Blood Flow Metab ; 32(5): 896-906, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22293985

RESUMO

Activation of the basal forebrain (BF), the primary source of acetylcholine (ACh) in the cortex, broadly increases cortical cerebral blood flow (CBF), a response downstream to ACh release. Although endothelial nitric oxide and cholinoceptive GABA (γ-aminobutyric acid) interneurons have been implicated, little is known about the role of pyramidal cells in this response and their possible interaction with astrocytes. Using c-Fos immunohistochemistry as a marker of neuronal activation and laser-Doppler flowmetry, we measured changes in CBF evoked by BF stimulation following pharmacological blockade of c-Fos-identified excitatory pathways, astroglial metabolism, or vasoactive mediators. Pyramidal cells including those that express cyclooxygenase-2 (COX-2) displayed c-Fos upregulation. Glutamate acting via NMDA, AMPA, and mGlu receptors was involved in the evoked CBF response, NMDA receptors having the highest contribution (~33%). In contrast, nonselective and selective COX-2 inhibition did not affect the evoked CBF response (+0.4% to 6.9%, ns). The metabolic gliotoxins fluorocitrate and fluoroacetate, the cytochrome P450 epoxygenase inhibitor MS-PPOH and the selective epoxyeicosatrienoic acids (EETs) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) all blocked the evoked CBF response by ~50%. Together, the data demonstrate that the hyperemic response to BF stimulation is largely mediated by glutamate released from activated pyramidal cells and by vasoactive EETs, likely originating from activated astrocytes.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Potenciais Evocados/fisiologia , Células Piramidais/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acetilcolina/metabolismo , Amidas/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Citratos/toxicidade , Ciclo-Oxigenase 2/metabolismo , Potenciais Evocados/efeitos dos fármacos , Fluoracetatos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 302(5): H1075-85, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198176

RESUMO

The increase in cerebral blood flow (CBF) during neuronal activation can be only partially attenuated by individual inhibitors of epoxyeicosatrienoic acids (EETs), cyclooxgenase-2, group I metabotropic glutamate receptors (mGluR), neuronal nitric oxide synthase (nNOS), N-methyl-D-aspartate receptors, or adenosine receptors. Some studies that used a high concentration (500 µM) of the cyclooxygenase-1 inhibitor SC-560 have implicated cyclooxygenase-1 in gliovascular coupling in certain model systems in the mouse. Here, we found that increasing the concentration of SC-560 from 25 µM to 500 µM over whisker barrel cortex in anesthetized rats attenuated the CBF response to whisker stimulation. However, exogenous prostaglandin E(2) restored the response in the presence of 500 µM SC-560 but not in the presence of a cyclooxygenase-2 inhibitor, thereby suggesting a limited permissive role for cyclooxygenase-1. Furthermore, inhibition of the CBF response to whisker stimulation by an EET antagonist persisted in the presence of SC-560 or a cyclooxygenase-2 inhibitor, thereby indicating that the EET-dependent component of vasodilation did not require cyclooxygenase-1 or -2 activity. With combined inhibition of cyclooxygenase-1 and -2, mGluR, nNOS, EETs, N-methyl-D-aspartate receptors, and adenosine 2B receptors, the CBF response was reduced by 60%. We postulated that the inability to completely block the CBF response was due to tissue acidosis resulting from impaired clearance of metabolically produced CO2. We tested this idea by increasing the concentration of superfused bicarbonate from 25 to 60 mM and found a markedly reduced CBF response to hypercapnia. However, increasing bicarbonate had no effect on the initial or steady-state CBF response to whisker stimulation with or without combined inhibition. We conclude that the residual response after inhibition of several known vasodilatory mechanisms is not due to acidosis arising from impaired CO2 clearance when the CBF response is reduced. An unidentified mechanism apparently is responsible for the rapid, residual cortical vasodilation during vibrissal stimulation.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Circulação Cerebrovascular/fisiologia , Ciclo-Oxigenase 1/fisiologia , Ciclo-Oxigenase 2/fisiologia , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/metabolismo , Vibrissas/fisiologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Acidose/metabolismo , Animais , Bicarbonatos/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos
13.
Neuroscience ; 194: 241-9, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21843605

RESUMO

One of the prominent features of Alzheimer's disease is the excessive accumulation of the protein amyloid beta (Aß) in certain areas of the brain leading to neurodegeneration. Aß is cytotoxic and disrupts several cytoprotective pathways. Recent literature has demonstrated that certain cytochrome P450 (CYP) products are neuroprotective, including epoxide metabolites of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs). The action of Aß with respect to regionally produced EETs in the brain has yet to be defined. Epoxygenases metabolize AA into four regioisomers of EETs (14,15-, 11,12-, 8,9- and 5,6-EET). EETs are rapidly degraded into dihydroxyeicosatrienoic acids (DiHETEs) by soluble epoxide hydrolase (sEH). To determine the effect of Aß on the epoxygenase activity in different regions of the brain, microsomes were prepared from the cerebrum and cerebellum of adult Sprague-Dawley rats and incubated with 1 and 10 µM Aß for 30 min after which epoxygenase activity assay was performed. Mass spectrometry indicated that incubation with Aß reduced 14,15-EET production by 30% as compared to vehicle in the cerebrum, but not in the cerebellum. When we separated the cerebrum into cortex and hippocampus, significant decrease in the production of total EETs and DiHETEs were seen in presence of Aß (81% and 74%) in the cortex. Moreover, 11,12-EET production was decreased to ∼70% of vehicle in both cortex and hippocampus. Epoxygenase activity in the cultured astrocytes and neurons also showed reduction in total EET and DiHETE production (to 80% and ∼70% of vehicle respectively) in presence of Aß. Altogether, our data suggest that Aß reduces epoxygenase activity differentially in a region-specific and cell-specific manner. The reduction of cytoprotective EETs by Aß in the cerebrum may make it more prone to degeneration than the cerebellum. Further understanding of these interactions will improve our ability to protect against the pathology of Alzheimer's disease.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fármacos Neuroprotetores/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Doença de Alzheimer/enzimologia , Animais , Animais Recém-Nascidos , Encéfalo/enzimologia , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/antagonistas & inibidores , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
14.
J Pharmacol Exp Ther ; 336(1): 47-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20881018

RESUMO

Cytochrome P-450 epoxygenases metabolize arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). EETs relax vascular smooth muscle by membrane hyperpolarization. 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE) antagonizes many vascular actions of EETs. EETs are converted to the corresponding dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). sEH activity in the bovine arterial endothelium and smooth muscle regulates endogenous EETs. This study examined sEH metabolism of 14,15-EE5ZE to 14,15-dihydroxy-eicosa-5(Z)-enoic acid (14,15-DHE5ZE) and the resultant consequences on EET relaxations of bovine coronary arteries (BCAs). BCAs converted 14,15-EE5ZE to 14,15-DHE5ZE. This conversion was blocked by the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). 14,15-EET relaxations (maximal relaxation, 83.4 ± 4.5%) were inhibited by 14,15-DHE5ZE (10 µM; maximal relaxation, 36.1 ± 9.0%; p < 0.001). In sharp contrast with 14,15-EE5ZE, 14,15-DHE5ZE is a 14,15-EET-selective inhibitor and did not inhibit 5,6-, 8,9-, or 11,12-EET relaxations. 14,15-EET and 11,12-EET relaxations were similar in the presence and absence of AUDA (1 µM). 14,15-EE5ZE inhibited 14,15-EET relaxations to a similar extent with and without AUDA pretreatment. However, 14,15-EE5ZE inhibited 11,12-EET relaxations to a greater extent with than without AUDA pretreatment. These observations indicate that sEH converts 14,15-EE5ZE to 14,15-DHE5ZE, and this alteration influences antagonist selectivity against EET-regioisomers. 14,15-DHE5ZE inhibited endothelium-dependent relaxations to AA but not endothelium-independent relaxations to sodium nitroprusside. A series of sEH-resistant ether analogs of 14,15-EE5ZE was developed, and analogs with agonist and antagonist properties were identified. The present study indicates that conversion of 14,15-EE5ZE to 14,15-DHE5ZE produces a 14,15-EET-selective antagonist that will be a useful pharmacological tool to identify EET receptor(s) and EET function in the cardiovascular system.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Vasos Coronários/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Bovinos , Vasos Coronários/fisiologia , Relação Dose-Resposta a Droga , Vasodilatação/fisiologia
15.
Cancer Sci ; 101(12): 2629-36, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20804500

RESUMO

Cytochrome P450 (CYP) epoxygenases, CYP2C8, 2C9 and 2J2 mRNA and proteins, were expressed in prostate carcinoma (PC-3, DU-145 and LNCaP) cells. 11,12-Epoxyeicosatrienoic acid (11,12-EET) was the major arachidonic acid metabolite in these cells. Blocking EET synthesis by a selective CYP epoxygenase inhibitor (N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide [MS-PPOH]) inhibited tonic (basal) invasion and migration (motility) while exogenously added EET induced cell motility in a concentration-dependent manner. An epidermal growth factor receptor (EGFR) kinase inhibitor (AG494) or a PI3 kinase inhibitor (LY294002) inhibited cell migration and reduced 11,12-EET-induced cell migration. Importantly, synthetic EET antagonists (14,15-epoxyeicosa-5(Z)-enoic acid [14,15-EEZE], 14,15-epoxyeicosa-5(Z)-enoic acid 2-[2-(3-hydroxy-propoxy)-ethoxy]-ethyl ester [14,15-EEZE-PEG] and 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide [14,15-EEZE-mSI]) inhibited EET-induced cell invasion and migration. 11,12-EET induced cell stretching and myosin-actin microfilament formation as well as increased phosphorylation of EGFR and Akt (Ser473), while 14,15-EEZE inhibited these effects. These results suggest that EET induce and EET antagonists inhibit cell motility, possibly by putative EET receptor-mediated EGFR and PI3K/Akt pathways, and suggest that EET antagonists are potential therapeutic agents for prostate cancer.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Carcinoma/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Imunofluorescência , Humanos , Masculino , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
J Pharmacol Exp Ther ; 331(3): 1137-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19762546

RESUMO

Epoxyeicosatrienoic acids (EETs) are endothelium-derived metabolites of arachidonic acid. They relax vascular smooth muscle by membrane hyperpolarization. These actions are inhibited by the EET antagonist, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE). We synthesized 20-(125)iodo-14,15-EE5ZE (20-(125)I-14,15-EE5ZE), a radiolabeled EET antagonist, and characterized its binding to cell membranes. 14,15-EET (10(-9)-10(-5)M) caused a concentration-related relaxation of the preconstricted bovine coronary artery and phosphorylation of p38 in U937 cells that were inhibited by 20-(125)I-14,15-EE5ZE. Specific 20-(125)I-14,15-EE5ZE binding to U937 cell membranes reached equilibrium within 5 min and remained unchanged for 30 min. The binding was saturable and reversible, and it exhibited K(D) and B(max) values of 1.11 +/- 0.13 nM and 1.13 +/- 0.04 pmol/mg protein, respectively. Guanosine 5'-O-(3-thio)triphosphate (10 muM) did not change the binding, indicating antagonist binding of the ligand. Various EETs and EET analogs (10(-10)-10(-5)M) competed for 20-(125)I-14,15-EE5ZE binding with an order of potency of 11,12-EET = 14,15-EET > 8,9-EET = 14,15-EE5ZE > 15-hydroxyeicosatetraenoic acid = 14,15-dihydroxyeicosatrienoic acid. 8,9-Dihydroxyeicosatrienoic acid and 11-hydroxyeicosatetraenoic acid did not compete for binding. The soluble and microsomal epoxide hydrolase inhibitors (1-cyclohexyl-3-dodecyl-urea, elaidamide, and 12-hydroxyl-elaidamide) and cytochrome P450 inhibitors (sulfaphenazole and proadifen) did not compete for the binding. However, two cytochrome P450 inhibitors, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) and miconazole competed for binding with K(i) of 1558 and 315 nM, respectively. Miconazole and MS-PPOH, but not proadifen, inhibited 14,15-EET-induced relaxations. These findings define an EET antagonist's binding site and support the presence of an EET receptor. The inhibition of binding by some cytochrome P450 inhibitors suggests an alternative mechanism of action for these drugs and could lead to new drug candidates that target the EET binding sites.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Membrana Celular/metabolismo , Compostos de Epóxi/farmacologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/síntese química , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Sítios de Ligação , Western Blotting , Bovinos , Membrana Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Relação Dose-Resposta a Droga , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Humanos , Radioisótopos do Iodo , Ligantes , Fosforilação , Células U937 , Vasodilatação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Am J Physiol Cell Physiol ; 295(5): C1292-301, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18787075

RESUMO

Cytochrome P-450 (CYP) epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acid (EET) regioisomers, which activate several signaling pathways to promote endothelial cell proliferation, migration, and angiogenesis. Since vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, we assessed a possible role of EETs in the VEGF-activated signal transduction cascade. Stimulation with VEGF increased CYP2C promoter activity in endothelial cells and enhanced CYP2C8 mRNA and protein expression resulting in increased intracellular EET levels. VEGF-induced endothelial cell tube formation was inhibited by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoicacid (14,15-EEZE), which did not affect the VEGF-induced phosphorylation of its receptor or basic fibroblast growth factor (bFGF)-stimulated tube formation. Moreover, VEGF-stimulated endothelial cell sprouting in a modified spheroid assay was reduced by CYP2C antisense oligonucleotides. Mechanistically, VEGF stimulated the phosphorylation of the AMP-activated protein kinase (AMPK), which has also been linked to CYP induction, and the overexpression of a constitutively active AMPK mutant increased CYP2C expression. On the other hand, a dominant-negative AMPK mutant prevented the VEGF-induced increase in CYP2C RNA and protein expression in human endothelial cells. In vivo (Matrigel plug assay) in mice, endothelial cells were recruited into VEGF-impregnated plugs; an effect that was sensitive to 14,15-EEZE and the inclusion of small interfering RNA directed against the AMPK. The EET antagonist did not affect responses observed in plugs containing bFGF. Taken together, our data indicate that CYP2C-derived EETs participate as second messengers in the angiogenic response initiated by VEGF and that preventing the increase in CYP expression curtails the angiogenic response to VEGF.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Células Cultivadas , Citocromo P-450 CYP2C8 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Indução Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Oligonucleotídeos Antissenso/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Fatores de Tempo , Transfecção
18.
Am J Physiol Regul Integr Comp Physiol ; 293(3): R1239-46, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17634204

RESUMO

We studied the roles of estrogen receptors (ER) and aromatase in the mediation of flow-induced dilation (FID) in isolated arteries of male ERalpha-knockout (ERalpha-KO) and wild-type (WT) mice. FID was comparable between gracilis arteries of WT and ERalpha-KO mice. In WT arteries, inhibition of NO and prostaglandins eliminated FID. In ERalpha-KO arteries, N(omega)-nitro-L-arginine methyl ester (L-NAME) inhibited FID by approximately 26%, whereas indomethacin inhibited dilations by approximately 50%. The remaining portion of the dilation was abolished by additional administration of 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) or iberiotoxin, inhibitors of epoxyeicosatrienoic acid (EET) synthesis and large-conductance potassium channels, respectively. By using an electrophysiological technique, we found that, in the presence of 10 dyne/cm(2) shear stress, perfusate passing through donor vessels isolated from gracilis muscle of ERalpha-KO mice subjected to L-NAME and indomethacin elicited smooth muscle hyperpolarization and a dilator response of endothelium-denuded detector vessels. These responses were prevented by the presence of iberiotoxin in detector or PPOH in donor vessels. Gas chromatography-mass spectrometry (GC-MS) analysis indicated a significant increase in arterial production of EETs in ERalpha-KO compared with WT mice. Western blot analysis showed a significantly reduced endothelial nitric oxide synthase expression but enhanced expressions of aromatase and ERbeta in ERalpha-KO arteries. Treatment of ERalpha-KO arteries with specific aromatase short-interfering RNA for 72 h, knocked down the aromatase mRNA and protein associated with elimination of EET-mediation of FID. Thus, FID in male ERalpha-KO arteries is maintained via an endothelium-derived hyperpolarizing factor/EET-mediated mechanism compensating for reduced NO mediation due, at least in part, to estrogen aromatized from testosterone.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Aromatase/fisiologia , Artérias/fisiologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Vasodilatação/genética , Vasodilatação/fisiologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Western Blotting , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Técnicas In Vitro , Indometacina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Compostos Organofosforados/farmacologia , Peptídeos/farmacologia , Perfusão , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Mecânico
19.
Am J Physiol Renal Physiol ; 293(1): F342-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17442729

RESUMO

Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hipertensão Renal/metabolismo , Hipertensão Renal/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Dieta , Gorduras na Dieta/farmacologia , Fenofibrato/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Hipertensão Renal/etiologia , Hipolipemiantes/farmacologia , Imuno-Histoquímica , Ácidos Láuricos/farmacologia , Masculino , Obesidade/complicações , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Sódio/metabolismo , Resistência Vascular/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
20.
FASEB J ; 20(3): 539-41, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415108

RESUMO

Erectile dysfunction (ED) is estimated to affect more than 30 million American men and 152 million men worldwide. Therapeutic agents targeting the nitric oxide/cyclic GMP signaling pathway have successfully treated patients with ED; however, the efficacies of these treatments are significantly lower in specific populations such as patients with diabetes. The goal of this study was to discover and identify new endothelium-derived relaxing factors involved in the regulation of erectile function, providing alternative therapeutic targets for treatment of ED. Immunoblotting results showed that protein expressions of epoxygenases from cytochrome P450 (CYP)2B, 2C and 2J subfamilies, as well as NADPH CYP reductase were present in rat corpora cavernosa, which was confirmed by immunohistochemical analysis. Furthermore, CYP2C was localized in cavernosal endothelial cells using double immunolabeling. CYP epoxygenase activity was analyzed by reverse-phase high-pressure liquid chromatography; and the results showed that 11,12- epoxyeicosatrienoic acid (EET) was the major product metabolized by CYP epoxygenases in rat corpora cavernosa. Inhibition of EETs function by injection of an EETs antagonist into rat penis significantly decreased intracavernosal pressure-induced by electrical stimulation of the major pelvic ganglion in vivo. In conclusion, our results suggest that EETs, produced by CYP epoxygenases, in penile endothelial cells serve as vasodilators. Inhibition of this pathway attenuated erectile function, suggesting that EETs are required for normal erection.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Sistema Enzimático do Citocromo P-450/fisiologia , NADPH-Ferri-Hemoproteína Redutase/fisiologia , Ereção Peniana/fisiologia , Pênis/enzimologia , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/classificação , Estimulação Elétrica , Indução Enzimática , Masculino , Microssomos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/análise , Óxido Nítrico/fisiologia , Pênis/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA