Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hypertens ; 29(5): 598-604, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26304959

RESUMO

OBJECTIVE: The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction. METHODS: Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia. RESULTS: All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP. CONCLUSIONS: EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH).


Assuntos
Ácido 8,11,14-Eicosatrienoico/toxicidade , Pressão Arterial/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Artéria Pulmonar/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/administração & dosagem , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Infusões Intravenosas , Masculino , Camundongos Endogâmicos C57BL , Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Função Ventricular Direita/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos
2.
Dev Biol ; 373(1): 14-25, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23064027

RESUMO

Polyunsaturated fatty acids serve both structural and functional roles as membrane components and precursors for a number of different factors involved in inflammation and signaling. These fatty acids are required in the human diet, although excess dietary intake of omega-6 fatty polyunsaturated fatty acids may have a negative influence on human health. In the model nematode, Caenorhabditis elegans, dietary exposure to dihomo-gamma-linolenic acid (DGLA), an omega-6 fatty acid, causes the destruction of germ cells and leads to sterility. In this study we used genetic and microscopic approaches to further characterize this phenomenon. We found that strains carrying mutations in genes involved in lipid homeostasis enhanced sterility phenotypes, while mutations reducing the activity of the conserved insulin/IGF signaling pathway suppressed sterility phenotypes. Exposure to a mild heat stress prior to omega-6 fatty acid treatment led to an adaptive or hormetic response, resulting in less sterility. Mutations in skn-1 and knockdown of genes encoding phase II detoxification enzymes led to increased sterility in the presence of dietary DGLA. Thus, detoxification systems and genetic changes that increase overall stress responses protect the germ cells from destruction. Microscopic analyses revealed that dietary DGLA leads to deterioration of germ cell membranes in the proliferative and transition zones of the developing germ line. Together, these data demonstrate that specific omega-6 polyunsaturated fatty acids, or molecules derived from them, are transported to the germ line where they disrupt the rapidly expanding germ cell membranes, leading to germ cell death.


Assuntos
Ácido 8,11,14-Eicosatrienoico/toxicidade , Gorduras na Dieta/toxicidade , Células Germinativas/fisiologia , Infertilidade/etiologia , Transdução de Sinais/genética , Estresse Fisiológico/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cromatografia Gasosa , Proteínas de Ligação a DNA/genética , Células Germinativas/efeitos dos fármacos , Temperatura Alta , Indóis , Insulina/metabolismo , Microscopia de Fluorescência , Mutação/genética , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Fatores de Transcrição/genética
3.
Food Chem Toxicol ; 47(6): 1280-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19275928

RESUMO

Dihomo-gamma-linolenic acid (DGLA) is one of the essential fatty acids, and has anti-inflammatory and anti-allergic effects. To assess the toxicity of a novel DGLA oil produced by the fungus Mortierella alpina, we examined it in the Ames test and in acute and subchronic oral toxicity tests in rats. In the Ames test, no mutagenicity was found up to 5000 microg/plate. The acute toxicity test revealed no toxicity related to DGLA oil at 10 g/kg. In the subchronic toxicity test, DGLA oil (500, 1000, and 2000 mg/kg) was orally administered. Water and soybean oil (2000 mg/kg) were used for the no-oil control and soybean oil control groups, respectively. There was no death in either sex. Because of administration of large amounts of oil, food consumption was low in the soybean oil control and the three test groups, which appeared to mildly decrease urinary excretion of Na, K, and Cl, as well as total serum protein, albumin, and blood urea nitrogen levels. There were no toxicological changes in body weight, food consumption, ophthalmological examination, urinalysis, hematological examination, blood biochemical examination, necropsy, organ weight, or histopathological examination. These findings show that the no-observed-adverse-effect level of the DGLA oil was 2000 mg/kg.


Assuntos
Ácido 8,11,14-Eicosatrienoico/toxicidade , Animais , Contagem de Células Sanguíneas , Análise Química do Sangue , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Oftalmopatias/induzido quimicamente , Oftalmopatias/patologia , Feminino , Masculino , Mortierella/química , Testes de Mutagenicidade , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Urinálise
4.
In Vivo ; 21(2): 267-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17436575

RESUMO

The use of Gleevec in the treatment of leukemia has been widely accepted, although resistance to Gleevec is commonly observed. Gleevec represents a new direction in the development of target-focused chemotherapeutic agents in cancer. Gleevec inhibits the tyrosine kinase activity of Bcr-Abl, which is responsible for leukemic cell survival. We have previously shown that PBT-3 (racemic anti-10(R/S)-hydroxy-11, 12-cyclopropyl-eicosa-5Z, 8Z, 14Z-trienoic acid methyl ester) and PBT-4 (racemic syn- 10(R/S)-hydroxy- 11,12-cyclopropyleicosa-5Z 8Z, 14Z-trienoic acid methyl ester), stable analogs of the hepoxilins, caused apoptosis of the human leukemic K562 cell line in vitro and in vivo. We also showed that PBTs inhibited the growth of tumours derived from the inoculation of immunodeficient mice with K562 cells and that the effect of PBTs was synergistic with that of Gleevec. We now show that the effect of PBT-3 and of PBT-4 is independent of that of Gleevec, demonstrating that Gleevec-resistant K562 cells retain their responsiveness to PBT treatment, resulting in apoptosis. These findings provide important information suggesting that the two compounds, PBT and Gleevec, can be used together in the treatment of leukemia. The PBTs may provide a new platform for the development of apoptotic drugs in cancer.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Piperazinas/toxicidade , Pirimidinas/toxicidade , Ácido 8,11,14-Eicosatrienoico/toxicidade , Antineoplásicos , Benzamidas , Relação Dose-Resposta a Droga , Humanos , Mesilato de Imatinib , Células K562 , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA