Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.222
Filtrar
1.
Bioresour Technol ; 413: 131525, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39321939

RESUMO

The marine alga Nannochloropsis oceanica can synthesize the high-value ketocarotenoid canthaxanthin yet at an extremely low level. Introducing a ß-carotenoid ketolase from Chlamydomonas reinhardtii into the chloroplast for expression, enabled N. oceanica to synthesize substantial amounts of canthaxanthin and grow better under high light. Compared to wild type, the engineered strain had higher levels of primary carotenoids and chlorophyll a as well, and synthesized more eicosapentaenoic acid (EPA, an ω3 polyunsaturated fatty acids). Further metabolic engineering by enhancing the flux to carotenoids or suppressing competing pathways allowed for a considerable increase of canthaxanthin, reaching 4.7 mg g-1 dry weight. A fed-batch culture strategy with nitrate and phosphate replenishment was developed for the co-production of canthaxanthin and EPA, which within a 10-day period reached 37.6 and 268.8 mg/L, respectively. This study sheds light on manipulating the industrially relevant alga for efficient co-production of high-value biochemicals from CO2.


Assuntos
Cantaxantina , Ácido Eicosapentaenoico , Engenharia Metabólica , Estramenópilas , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Cantaxantina/biossíntese , Cantaxantina/metabolismo , Estramenópilas/metabolismo , Engenharia Metabólica/métodos , Chlamydomonas reinhardtii/metabolismo , Técnicas de Cultura Celular por Lotes , Cloroplastos/metabolismo , Clorofila/metabolismo
2.
New Phytol ; 244(4): 1467-1481, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39253772

RESUMO

Nannochloropsis oceanica is an industrially relevant marine microalga rich in eicosapentaenoic acid (EPA, a valuable ω-3 polyunsaturated fatty acid), yet the algal production potential remains to be unlocked. Here we engineered N. oceanica to synthesize the high-value carotenoid astaxanthin independent of high-light (HL) induction for achieving multifaceted benefits. By screening ß-carotenoid ketolases and hydroxylases of various origins, and strategically manipulating compartmentalization, fusion patterns, and linkers of the enzyme pair, a remarkable 133-fold increase in astaxanthin content was achieved in N. oceanica. Iterative metabolic engineering efforts led to further increases in astaxanthin synthesis up to 7.3 mg g-1, the highest reported for microalgae under nonstress conditions. Astaxanthin was found in the photosystem components and allowed the alga HL resistance and augmented EPA production. Besides, we achieved co-production of astaxanthin and EPA by the engineered alga through a fed-batch cultivation approach. Our findings unveil the untapped potential of N. oceanica as a robust, light-driven chassis for constitutive astaxanthin synthesis and provide feasible strategies for the concurrent production of multiple high-value biochemicals from CO2, thereby paving the way for sustainable biotechnological applications of this alga.


Assuntos
Ácido Eicosapentaenoico , Luz , Engenharia Metabólica , Estramenópilas , Xantofilas , Xantofilas/metabolismo , Estramenópilas/metabolismo , Estramenópilas/efeitos da radiação , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Engenharia Metabólica/métodos , Microalgas/metabolismo , Organismos Aquáticos/metabolismo , Técnicas de Cultura Celular por Lotes
3.
Food Chem ; 460(Pt 2): 140572, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089041

RESUMO

Lipases are widely used in the modification of functional lipids, particularly in the enrichment of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In this study, a lipase named OUC-Sb-lip2 was expressed in Yarrowia lipolytica, achieving a promising enzyme activity of 472.6 U/mL by optimizing the culture medium, notably through olive oil supplementation. A significant proportion (58.8%) of the lipase activity was located in the cells, whereas 41.2% was secreted into the supernatant. Both whole-cell and immobilized OUC-Sb-lip2 were used to enrich DHA and EPA from fish oil. The whole-cell approach increased the DHA and EPA contents to 2.59 and 2.55 times that of the original oil, respectively. Similarly, the immobilized OUC-Sb-lip2 resulted in a 2.00-fold increase in DHA and an 1.99-fold increase in EPA after a 6-h hydrolysis period. Whole cell and the immobilized OUC-Sb-lip2 retained 48.7% and 52.7% of their activity after six cycles of reuse, respectively.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Óleos de Peixe , Lipase , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/química , Óleos de Peixe/química , Óleos de Peixe/metabolismo , Ácido Eicosapentaenoico/análise , Ácido Eicosapentaenoico/metabolismo , Lipase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
4.
Mar Biotechnol (NY) ; 26(5): 991-999, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122812

RESUMO

Isochrysis galbana is valuable in aquaculture due to its production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, achieving high yields of polyunsaturated fatty acids (PUFAs) presents challenges, leading to exploration of innovative approaches. This study investigated the influence of Bacillus jeotgali on the growth of I. galbana and its fatty acid composition. Co-culturing I. galbana with B. jeotgali significantly increased chlorophyll a content and cell abundance, particularly at higher bacterial population densities (algae-to-bacteria ratio of 1:10). Physiological and biochemical analyses found elevated soluble protein content in microalgae co-cultured with B. jeotgali, accompanied by decreased superoxide dismutase (SOD) activity. Fatty acid composition analysis demonstrated a distinctive profile in co-cultured I. galbana, characterized by increased PUFAs, especially EPA and DHA. Gene expression analysis indicated an upregulation of desaturase genes (d4FAD, d5FAD, d6FAD, and d8FAD) associated with PUFA synthesis pathway in I. galbana during co-culturing with B. jeotgali. This study advances our understanding of bacteria-microalgae interactions and presents a promising strategy for enhancing the production of DHA and EPA.


Assuntos
Bacillus , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Haptófitas , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Haptófitas/metabolismo , Haptófitas/genética , Bacillus/metabolismo , Bacillus/genética , Técnicas de Cocultura , Microalgas/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Clorofila A/metabolismo , Aquicultura , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
5.
Bioresour Technol ; 410: 131307, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155016

RESUMO

Utilizing flue gas CO2 to co-produce eicosapentaenoic acid (EPA) with microalgae is considered an ideal approach for combating climate change and reducing cultivation costs. However, microalgal species that can efficiently produce EPA under high-CO2 conditions are scarce. This study identified that the eustigmatophycean strain Vacuoliviride crystalliferum demonstrates rapid growth under 20 % CO2 conditions (0.22 vvm), achieving a biomass concentration and productivity of 3.90 g/L and 229.26 mg/L/d, respectively. The EPA content and EPA productivity were found to be 4.28 % (w/w) and 9.80 mg/L/d, respectively. Additionally, an improved biomass concentration of 3.39 g/L and EPA content and productivity of 4.32 % (w/w) and 11.28 mg/L/d were obtained in a 30 L up-scaled cultivation system. Taken together, these findings suggest that V. crystalliferum is a promising candidate for integrating flue gas sequestration with EPA production.


Assuntos
Biomassa , Dióxido de Carbono , Ácido Eicosapentaenoico , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Estramenópilas/metabolismo
6.
FASEB J ; 38(14): e23807, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989570

RESUMO

Specialized proresolving mediators (SPMs) promote local macrophage efferocytosis but excess leukocytes early in inflammation require additional leukocyte clearance mechanism for resolution. Here, neutrophil clearance mechanisms from localized acute inflammation were investigated in mouse dorsal air pouches. 15-HEPE (15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid) levels were increased in the exudates. Activated human neutrophils converted 15-HEPE to lipoxin A5 (5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), 15-epi-lipoxin A5 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), and resolvin E4 (RvE4; 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid). Exogenous 15-epi-lipoxin A5, 15-epi-lipoxin A4 and a structural lipoxin mimetic significantly decreased exudate neutrophils and increased local tissue macrophage efferocytosis, with comparison to naproxen. 15-epi-lipoxin A5 also cleared exudate neutrophils faster than the apparent local capacity for stimulated macrophage efferocytosis, so the fate of exudate neutrophils was tracked with CD45.1 variant neutrophils. 15-epi-lipoxin A5 augmented the exit of adoptively transferred neutrophils from the pouch exudate to the spleen, and significantly increased splenic SIRPa+ and MARCO+ macrophage efferocytosis. Together, these findings demonstrate new systemic resolution mechanisms for 15-epi-lipoxin A5 and RvE4 in localized tissue inflammation, which distally engage the spleen to activate macrophage efferocytosis for the clearance of tissue exudate neutrophils.


Assuntos
Lipoxinas , Macrófagos , Neutrófilos , Baço , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Humanos , Lipoxinas/metabolismo , Lipoxinas/farmacologia , Baço/metabolismo , Baço/citologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose , Masculino , Inflamação/metabolismo , Ácidos Heptanoicos
7.
J Agric Food Chem ; 72(30): 16835-16847, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39028993

RESUMO

Few reports exist on one-step enzymatic methods for the simultaneous production of biodiesel and eicosapentaenoic acid ethyl ester (EPA-EE), a high-value pharmaceutical compound. This study aimed to efficiently express Rhizomucor miehei lipase (pRML) in Pichia pastoris X-33 via propeptide mutation and high-copy strain screening. The mutated enzyme was then used to simultaneously catalyze the production of both biodiesel and EPA-EE. The P46N mutation in the propeptide (P46N-pRML) significantly boosted its production, with the four-copy strain increasing enzyme yield by 3.7-fold, reaching 3425 U/mL. Meanwhile, its optimal temperature increased to 45-50 °C, pH expanded to 7.0-8.0, specific activity doubled, Km reduced to one-third, and kcat/Km increased 7-fold. Notably, P46N-pRML efficiently converts Nannochloropsis gaditana oil's eicosapentaenoic acid (EPA). Under optimal conditions, it achieves up to 93% biodiesel and 92% EPA-EE yields in 9 h. Our study introduces a novel, efficient one-step green method to produce both biodiesel and EPA-EE using this advanced enzyme.


Assuntos
Biocombustíveis , Ácido Eicosapentaenoico , Proteínas Fúngicas , Lipase , Rhizomucor , Estramenópilas , Rhizomucor/enzimologia , Rhizomucor/genética , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/análogos & derivados , Lipase/metabolismo , Lipase/genética , Lipase/química , Biocombustíveis/análise , Estramenópilas/genética , Estramenópilas/enzimologia , Estramenópilas/metabolismo , Estramenópilas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Expressão Gênica , Estabilidade Enzimática , Cinética , Temperatura , Concentração de Íons de Hidrogênio , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-39038779

RESUMO

n-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), including eicosapentaenoic acid (EPA), are essential multifunctional nutrients in animals. Microorganisms such as microalgae are known to be n-3 LC-PUFA producers in aquatic environments. Various aquatic invertebrates, including Harpacticoida copepods, and a few terrestrial invertebrates, such as the nematode Caenorhabditis elegans, possess n-3 LC-PUFA biosynthetic enzymes. However, the capacity for n-3 LC-PUFA biosynthesis and the underlying molecular mechanisms in terrestrial insects are largely unclear. In this study, we investigated the fatty acid biosynthetic pathway in the silkworm Bombyx mori and found that EPA was present in silkworms throughout their development. Stable isotope tracing revealed that dietary α-linolenic acid (ALA) was metabolized to EPA in silkworm larvae. These results indicated that silkworms synthesize EPA from ALA. Given that EPA is enriched in the central nervous system, we propose that EPA confers optimal neuronal functions, similar to docosahexaenoic acid, in the mammalian nervous system.


Assuntos
Bombyx , Ácido Eicosapentaenoico , Ácido alfa-Linolênico , Animais , Bombyx/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácido alfa-Linolênico/metabolismo , Larva/metabolismo , Dieta
9.
J Nutr Biochem ; 131: 109689, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38876393

RESUMO

Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.


Assuntos
Ácidos Docosa-Hexaenoicos , Camundongos Endogâmicos C57BL , Ácido alfa-Linolênico , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Animais , Feminino , Masculino , Ácido alfa-Linolênico/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/sangue , Camundongos , Isótopos de Carbono , Fígado/metabolismo , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/sangue
10.
Prostaglandins Other Lipid Mediat ; 174: 106854, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825147

RESUMO

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplements have exhibited inconsistent effects on cancer risk, and their potential efficacy as cancer preventive agents has been increasingly questioned, especially in recent large randomized clinical trials. The role of host factors that govern EPA and DHA metabolism in relation to their impact on carcinogenesis remains understudied. Resolvins, the products of EPA and DHA oxidative metabolism, demonstrate intriguing antitumorigenic effects through mechanisms such as promoting macrophage phagocytosis of cell debris and inhibiting the production of proinflammatory chemokines and cytokines by tumor-associated macrophages (TAMs), which are crucial for cancer progression. However, clinical studies have not yet shown a significant increase in target tissue levels of resolvins with EPA and DHA supplementation. 15-Lipoxygenase-1 (ALOX15), a key enzyme in EPA and DHA oxidative metabolism, is often lost in various major human cancers, including precancerous and advanced colorectal cancers. Further research is needed to elucidate whether the loss of ALOX15 expression in colorectal precancerous and cancerous cells affects EPA and DHA oxidative metabolism, the formation of resolvins, and subsequently carcinogenesis. The findings from these studies could aid in the development of novel and effective chemoprevention interventions to reduce cancer risk.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Neoplasias , Humanos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias/patologia , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Suplementos Nutricionais
11.
Braz J Microbiol ; 55(3): 2211-2226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38874742

RESUMO

Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer numerous health benefits. Enriching these fatty acids in fish oil using cost-effective methods, like lipase application, has been studied extensively. This research aimed to investigate F. solani as a potential lipase producer and compare its efficacy in enhancing polyunsaturated omega-3 fatty acids with commercial lipases. Submerged fermentation with coconut oil yielded Lipase F2, showing remarkable activity (215.68 U/mL). Lipase F2 remained stable at pH 8.0 (activity: 93.84 U/mL) and active between 35 and 70 °C, with optimal stability at 35 °C. It exhibited resistance to various surfactants and ions, showing no cytotoxic activity in vitro, crucial for its application in the food and pharmaceutical industries. Lipase F2 efficiently enriched EPA and DHA in fish oil, reaching 22.1 mol% DHA and 23.8 mol% EPA. These results underscore the economic viability and efficacy of Lipase F2, a partially purified enzyme obtained using low-cost techniques, demonstrating remarkable stability and resistance to diverse conditions. Its performance was comparable to highly pure commercially available enzymes in omega-3 production. These findings highlight the potential of F. solani as a promising lipase source, offering opportunities for economically producing omega-3 and advancing biotechnological applications in the food and supplements industry.


Assuntos
Ácidos Graxos Ômega-3 , Fusarium , Lipase , Fusarium/enzimologia , Fusarium/efeitos dos fármacos , Lipase/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/metabolismo , Óleos de Peixe/química , Fermentação , Proteínas Fúngicas/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Óleo de Coco/química , Óleo de Coco/metabolismo , Temperatura
12.
J Biosci Bioeng ; 138(2): 105-110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825559

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.


Assuntos
Diatomáceas , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Diatomáceas/metabolismo , Diatomáceas/genética , Ácidos Graxos Ômega-3/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Engenharia Genética , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Microalgas/metabolismo , Microalgas/genética , Aquicultura
13.
Food Chem ; 456: 139414, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38901077

RESUMO

Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial. Levels of EPA + DHA in flesh of salmon fed TCO were significantly higher than in fish fed COM. A 140 g fillet from TCO-fed salmon delivered 2.3 g of EPA + DHA, 67% of the weekly requirement level recommended by many health agencies, and 1.5-fold more than the 1.5 g of EPA + DHA for COM-fed fish. Oil from transgenic Camelina supported growth and improved the nutritional quality of farmed salmon in terms of increased "omega-3" supply for human consumers.


Assuntos
Ração Animal , Brassicaceae , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Óleos de Plantas , Plantas Geneticamente Modificadas , Salmo salar , Animais , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ração Animal/análise , Ácido Eicosapentaenoico/análise , Ácido Eicosapentaenoico/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Brassicaceae/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Óleos de Peixe/metabolismo , Água do Mar/química , Aquicultura
14.
Plant Physiol Biochem ; 213: 108799, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857564

RESUMO

The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases.


Assuntos
Ciclopentanos , Ácido Eicosapentaenoico , Oomicetos , Oxilipinas , Vitis , Vitis/microbiologia , Vitis/metabolismo , Vitis/genética , Vitis/imunologia , Vitis/efeitos dos fármacos , Ácido Eicosapentaenoico/metabolismo , Oomicetos/fisiologia , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia
15.
Appl Microbiol Biotechnol ; 108(1): 368, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860989

RESUMO

The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.


Assuntos
Ácido Eicosapentaenoico , Microalgas , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Bactérias/metabolismo , Bactérias/genética
16.
Nat Metab ; 6(8): 1566-1583, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907081

RESUMO

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with potential cardiovascular benefits, partly attributed to their bioactive metabolites. However, the underlying mechanisms responsible for these advantages are not fully understood. We previously reported that metabolites of the cytochrome P450 pathway derived from eicosapentaenoic acid (EPA) mediated the atheroprotective effect of ω-3 PUFAs. Here, we show that 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and its receptor, sphingosine-1-phosphate receptor 1 (S1PR1), in endothelial cells (ECs) can inhibit oscillatory shear stress- or tumor necrosis factor-α-induced endothelial activation in cultured human ECs. Notably, the atheroprotective effect of 17,18-EEQ and purified EPA is circumvented in male mice with endothelial S1PR1 deficiency. Mechanistically, the anti-inflammatory effect of 17,18-EEQ relies on calcium release-mediated endothelial nitric oxide synthase (eNOS) activation, which is abolished upon inhibition of S1PR1 or Gq signaling. Furthermore, 17,18-EEQ allosterically regulates the conformation of S1PR1 through a polar interaction with Lys34Nter. Finally, we show that Vascepa, a prescription drug containing highly purified and stable EPA ethyl ester, exerts its cardiovascular protective effect through the 17,18-EEQ-S1PR1 pathway in male and female mice. Collectively, our findings indicate that the anti-inflammatory effect of 17,18-EEQ involves the activation of the S1PR1-Gq-Ca2+-eNOS axis in ECs, offering a potential therapeutic target against atherosclerosis.


Assuntos
Ácido Eicosapentaenoico , Receptores de Esfingosina-1-Fosfato , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Humanos , Camundongos , Receptores de Esfingosina-1-Fosfato/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Receptores de Lisoesfingolipídeo/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Ácidos Araquidônicos
17.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791555

RESUMO

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Assuntos
Anorexia Nervosa , Ácidos Graxos , Humanos , Feminino , Anorexia Nervosa/metabolismo , Adulto , Ácidos Graxos/metabolismo , Adulto Jovem , Lipogênese , Ácido Eicosapentaenoico/metabolismo , Ácidos Láuricos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Adolescente , Ácidos Graxos Dessaturases/metabolismo , Estudos de Casos e Controles , Ácidos Graxos Insaturados
18.
Med Sci Monit ; 30: e943895, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733071

RESUMO

BACKGROUND Preterm birth is one of the main causes of neonatal death worldwide. One strategy focused on preventing preterm birth is the administration of long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy. Omega-3 LCPUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential in metabolic and physiological processes during embryonic and fetal development. This study aimed to compare DHA and EPA levels in 44 women with preterm births and 44 women with term births at a tertiary hospital in West Java Province, Indonesia, between November 2022 and March 2023. MATERIAL AND METHODS A total of 88 patients in this study consisted of 44 patients with term births (≥37 gestational weeks) and 44 patients with preterm births (<37 gestational weeks) at a tertiary hospital in West Java Province, Indonesia. This observational, cross-sectional study was conducted from November 2022 to March 2023. Using the enzyme-linked immunosorbent assay test, maternal DHA and EPA levels were investigated. IBM SPSS 24.0 was used to statistically measure outcomes. RESULTS Average maternal DHA and EPA levels in patients with preterm births were significantly lower than those in term births. Preterm labor risk was further increased by DHA levels of ≤5.70 µg/mL (OR=441.00, P=0.000) and EPA levels ≤3971.54 µg/mL (OR=441.00, P=0.000). CONCLUSIONS Since the average maternal DHA and EPA levels were significantly lower in patients with preterm births, adequate intake of omega-3 LCPUFA in early pregnancy and consistency with existing nutritional guidelines was associated with a lower risk of preterm delivery for pregnant women.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Nascimento Prematuro , Nascimento a Termo , Centros de Atenção Terciária , Humanos , Feminino , Indonésia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Adulto , Estudos Transversais , Recém-Nascido , Ácidos Graxos Ômega-3/metabolismo , Idade Gestacional
19.
J Oleo Sci ; 73(6): 895-903, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797690

RESUMO

Abdominal aortic aneurysm (AAA) is a vascular disease characterized by progressive dilation of the abdominal aorta. Previous studies have suggested that dietary components are closely associated with AAA. Among those dietary components, eicosapentaenoic acid (EPA) is considered to have suppressive effects on AAA. In the AAA wall of AAA model animals bred under EPA-rich condition, the distribution of EPA-containing phosphatidylcholine (EPA-PC) has been reported to be similar to that of the markers of mesenchymal stem cells (MSCs) and M2 macrophages. These data suggest that the suppressive effects of EPA on AAA are related to preferential distribution of specific cells in the aortic wall. However, the distribution of EPA-PC in the AAA wall of AAA model animals fed a diet containing small amounts of EPA, which has not been reported to inhibit AAA, has not yet been explored. In the present study, we visualized the distribution of EPA-PCs in the AAA wall of AAA model animals fed a diet containing small amounts of EPA (1.5% EPA in the fatty acid composition) to elucidate the vasoprotective effects of EPA. Positive areas for markers of MSCs were significantly higher in the region where EPA-PC was abundant compared to the regions where EPA-PC was weakly detected, but not for markers of M2 macrophages, matrix metalloproteinase (MMP)-2, and MMP-9. The distribution of MSC markers was similar to that of EPA-PC but not that of M2 macrophages and MMPs. These data suggest preferential incorporation of EPA into MSCs under the conditions used in this study. The incorporation of EPA into certain cells may differ according to dietary conditions, which affect the development of AAA.


Assuntos
Aorta Abdominal , Aneurisma da Aorta Abdominal , Modelos Animais de Doenças , Ácido Eicosapentaenoico , Células-Tronco Mesenquimais , Fosfatidilcolinas , Animais , Ácido Eicosapentaenoico/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Células-Tronco Mesenquimais/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/análise , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Masculino , Dieta , Ratos , Macrófagos/metabolismo , Biomarcadores/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
20.
Plant Physiol Biochem ; 211: 108729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754177

RESUMO

Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO2 into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production. We thoroughly investigated the effects of varying temperatures and nitrogen (NaNO3) concentrations on biomass, total lipid content, and EPA proportions. We successfully identified optimal conditions at an initial NaNO3 concentration of 1.28 g.L-1 and a temperature of 21 °C. This condition was further validated by response surface methodology, which resulted in the highest EPA productivity reported in batch systems (14.4 mg.L-1.day-1). Quantitative real-time PCR and transcriptomic analysis also demonstrated a positive correlation between specific gene expressions and enhanced EPA production. Through a comprehensive lipid analysis and photosynthetic pigment analysis, we deduced that the production of EPA in Nannochloropsis salina seemed to be produced by the remodeling of chloroplast membrane lipids. These findings provide crucial insights into how temperature and nutrient availability influence fatty acid composition in N. salina, offering valuable guidance for developing strategies to improve EPA production in various microalgae species.


Assuntos
Ácido Eicosapentaenoico , Microalgas , Nitrogênio , Fotossíntese , Estramenópilas , Temperatura , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Nitrogênio/metabolismo , Microalgas/metabolismo , Estramenópilas/metabolismo , Estramenópilas/genética , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA