Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.900
Filtrar
1.
Anal Chem ; 96(32): 13270-13277, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093913

RESUMO

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.


Assuntos
Biomarcadores Tumorais , Caderinas , Transição Epitelial-Mesenquimal , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Caderinas/análise , Caderinas/metabolismo , Corantes Fluorescentes/química , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Células MCF-7 , Ácidos Borônicos/química , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo
2.
Sci Rep ; 14(1): 17856, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090178

RESUMO

Surface display of functional groups with specific reactivity around living cells is an emerging, low cost and highly eco-compatible technology that serves multiple applications, ranging from basic biochemical studies to biomedicine, therapeutics and environmental sciences. Conversely to classical methods exploiting hazardous organic synthesis of precursors or monovalent functionalization via genetics, here we perform functional decoration of individual living microalgae using suitable biocoatings based on polydopamine, a melanin-like synthetic polymer. Here we demonstrate the one-pot synthesis of a functional polydopamine bearing phenylboronic units which can decorate the living cell surfaces via a direct ester formation between boronic units and surface glycoproteins. Furthermore, biosorption of fluorescent sugars on functionalized cell membranes is triggered, demonstrating that these organic coatings act as biocompatible soft shells, still functional and reactive after cell engineering.


Assuntos
Ácidos Borônicos , Indóis , Melaninas , Polímeros , Polímeros/química , Melaninas/química , Melaninas/metabolismo , Indóis/química , Ácidos Borônicos/química , Microalgas/metabolismo , Microalgas/química
3.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998952

RESUMO

The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.


Assuntos
Ácidos Borônicos , Colorimetria , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Colorimetria/métodos , Ácidos Borônicos/química , Imunoensaio/métodos , Humanos , Benzidinas/química , Oxirredução , Antígeno Prostático Específico/análise , Peróxido de Hidrogênio/química , Anticorpos/química , Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo
4.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954479

RESUMO

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Assuntos
Química Click , Criogéis , Salmonella , Staphylococcus aureus , Criogéis/química , Staphylococcus aureus/isolamento & purificação , Animais , Salmonella/isolamento & purificação , Porosidade , Leite/microbiologia , Leite/química , Ácidos Borônicos/química , Bovinos , Metacrilatos/química
5.
Mikrochim Acta ; 191(7): 432, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951266

RESUMO

Cystinuria is a genetic disorder, and in severe cases, it might lead to kidney failure. As an important biomarker for cystinuria, the level of arginine (Arg) in urine is a vital indicator for cystinuria screening. Therefore, it is urgently needed to detect Arg with high selectivity and sensitivity. In this work, a boric acid functionalized Zr-based metal-organic framework UiO-PhbA is prepared by grafting phenylboronic acid on UiO-66-NH2 through a Schiff base reaction using a covalent post-synthesis modification (CPSM) strategy. The prepared UiO-PhbA exhibits a sensitive and specific fluorescence "turn-on" response to Arg and can be exploited to detect Arg in human serum and urine samples with a broad linear range of 0.6-350 µM and low limit of detection (LOD) of 18.45 nM. This study provides a new and reliable rapid screening protocol for sulfite oxidase deficiency-related diseases.


Assuntos
Arginina , Biomarcadores , Ácidos Borônicos , Cistinúria , Corantes Fluorescentes , Limite de Detecção , Estruturas Metalorgânicas , Humanos , Cistinúria/diagnóstico , Cistinúria/urina , Estruturas Metalorgânicas/química , Corantes Fluorescentes/química , Arginina/química , Arginina/sangue , Biomarcadores/urina , Biomarcadores/sangue , Ácidos Borônicos/química , Espectrometria de Fluorescência/métodos , Zircônio/química
6.
J Am Chem Soc ; 146(28): 19160-19167, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958264

RESUMO

Boronic acids and esters are highly regarded for their safety, unique reactivity, and versatility in synthesizing a wide range of small molecules, bioconjugates, and materials. They are not exploited in biocatalytic synthesis, however, because enzymes that can make, break, or modify carbon-boron bonds are rare. We wish to combine the advantages of boronic acids and esters for molecular assembly with biocatalysis, which offers the potential for unsurpassed selectivity and efficiency. Here, we introduce an engineered protoglobin nitrene transferase that catalyzes the new-to-nature amination of boronic acids using hydroxylamine. Initially targeting aryl boronic acids, we show that the engineered enzyme can produce a wide array of anilines with high yields and total turnover numbers (up to 99% yield and >4000 TTN), with water and boric acid as the only byproducts. We also demonstrate that the enzyme is effective with bench-stable boronic esters, which hydrolyze in situ to their corresponding boronic acids. Exploring the enzyme's capacity for enantioselective catalysis, we found that a racemic alkyl boronic ester affords an enantioenriched alkyl amine, a transformation not achieved with chemocatalysts. The formation of an exclusively unrearranged product during the amination of a boronic ester radical clock and the reaction's stereospecificity support a two-electron process akin to a 1,2-metallate shift mechanism. The developed transformation enables new biocatalytic routes for synthesizing chiral amines.


Assuntos
Aminas , Biocatálise , Ácidos Borônicos , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Aminas/química , Aminas/metabolismo , Estereoisomerismo , Aminação , Estrutura Molecular
7.
Biosens Bioelectron ; 262: 116542, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38991372

RESUMO

Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.


Assuntos
Técnicas Biossensoriais , Automonitorização da Glicemia , Glicemia , Transferência Ressonante de Energia de Fluorescência , Hidrogéis , Agulhas , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Hidrogéis/química , Automonitorização da Glicemia/instrumentação , Glicemia/análise , Animais , Suínos , Polietilenoglicóis/química , Limite de Detecção , Resinas Acrílicas/química , Desenho de Equipamento , Monitoramento Contínuo da Glicose , Ácidos Borônicos
8.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
9.
Talanta ; 278: 126521, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996559

RESUMO

The sensitivity and accuracy of fluorescence probes for biological samples are affected by not only interfering molecule compounds but also the nonspecific adsorption of proteins and other macromolecules. Herein, fluorescence probe based on zwitterionic sulfobetaine methacrylate polymer (PSBMA) as an antibiofouling layer and amino boric acid carbon dots encapsulated in the metal-organic framework UiO-66-NH2 (UiO-66-NH2/BN-CDs) as a target recognition site was designed for the detection of baicalin (BAI). Owing to the introduction of BN-CDs into UiO-66-NH2 with high specific surface area, the prepared UiO-66-NH2/BN-CDs@PSBMA probe exhibited a high adsorption capacity of 78.9 mg g-1, while presented fluorescence enhancing and superior fluorescence selectivity to BAI at excitation and emission wavelengths of 400 and 425 nm, respectively. Connecting PSBMA with good hydrophilicity to UiO-66-NH2, resulted in an anti-protein capacity of over 96.3 %, effectively inhibiting protein interference with the fluorescence signal. By virtue of its good antibiofouling and recognizing capacities, the fluorescence probe exhibited a satisfactory detection range of 10-80 nmol L-1, with a fairly low detection limit of 0.0064 µmol L-1. Using the method to detect BAI in Goji berry, Sophora and Yinhuang oral solution, demonstrating its potential for the accurate and quantitative detection of BAI in complex biological samples.


Assuntos
Ácidos Borônicos , Carbono , Flavonoides , Corantes Fluorescentes , Estruturas Metalorgânicas , Pontos Quânticos , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Ácidos Borônicos/química , Carbono/química , Flavonoides/química , Flavonoides/análise , Pontos Quânticos/química , Incrustação Biológica/prevenção & controle , Polímeros/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Metacrilatos/química , Adsorção , Betaína/química , Betaína/análogos & derivados , Ácidos Ftálicos
10.
Int J Biol Macromol ; 275(Pt 2): 133738, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992536

RESUMO

Pancreatic cancer cells highly resistance to conventional chemo drugs, resulting low survival rates. The aim of the study was to design and develop dual targeting polymersomes (DTPS) loaded with phyto alkaloid agent i.e., piperlongumine (PL) for effective pancreatic cancer treatment. Here, hyaluronic acid (HA) was functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG-NH2), poly(ethylene glycol) bis (amine) (PEG), and phenylboronic acid (PBA) moieties. The designed DTPS could selectively recognize CD44/sialic acid (SA) and deliver PL to MIA PaCa-2 pancreatic cancer cells, facilitated via HA-CD44 and PBA-SA interactions. Drug release and stability results implied sustained PL release profile and pH sensitivity. DTPS could be more efficiently bound with SA than other sugars based on fluorescence spectroscopy. The anticancer efficacy of designed polymersomes was tested with H6C7 normal pancreas cells and SA/CD44-overexpressed MIA PaCa-2 pancreatic cancer cells. DTPS showed both SA and CD44-mediated higher cellular uptake while single-targeted polymersomes showed CD44-mediated cellular uptake. The PL-loaded DTPS efficiently uptake by MIA PaCa-2 cancer cells, causing up to 80 % cell growth inhibition, reduced cell spheroids volume and increased dead cells by 58.3 %. These results indicate that the newly developed DTPS can effectively serve as a pH-responsive drug delivery system for efficient treatment of cancer.


Assuntos
Ácidos Borônicos , Dioxolanos , Ácido Hialurônico , Neoplasias Pancreáticas , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Dioxolanos/farmacologia , Dioxolanos/química , Linhagem Celular Tumoral , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Liberação Controlada de Fármacos , Receptores de Hialuronatos/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos , Piperidonas
11.
J Chromatogr A ; 1731: 465198, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39059303

RESUMO

Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 µm to 11.60 µm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. ß-Nicotinamide adenine dinucleotide (ß-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for ß-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.


Assuntos
Ácidos Borônicos , Polietilenoimina , RNA , Sefarose , Ácidos Borônicos/química , Polietilenoimina/química , Sefarose/química , RNA/química , Humanos , Adsorção , Animais , Tamanho da Partícula
12.
Mikrochim Acta ; 191(8): 476, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037471

RESUMO

A highly sensitive dual-recognition fluorescence amplification method is presented for lipopolysaccharide (LPS) detection based on boronic functionalized aptamer macroarrays with dual-recognition and isothermal amplification. The surface of the polystyrene microplate was firstly carboxylated, and then, 3-aminophenylboronic acid was conjugated to the carboxyl groups through EDC/NHS reaction, creating boronic acid groups as the capture moiety for LPS. A recognition DNA aptamer labeled with the fluorescent dye 6-FAM, which exhibits specificity towards LPS, was selected as the signal reporting moiety. By introducing primers and Klenow enzyme, the fluorescent-labeled aptamers are released from the microplate bottom, and double-stranded structures were formed via isothermal amplification. The addition of SYBR Green I, which strongly fluoresces upon binding to the double-stranded structures, enables signal amplification and detection. This detection method exhibits a linear range of 1-10,000 ng/mL and has a detection limit as low as 401.93 pg/mL. This analytical approach shows high selectivity and sensitivity and may serve as a universal platform in lipopolysaccharide detection.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Borônicos , Corantes Fluorescentes , Limite de Detecção , Lipopolissacarídeos , Técnicas de Amplificação de Ácido Nucleico , Aptâmeros de Nucleotídeos/química , Lipopolissacarídeos/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Borônicos/química , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos
13.
J Med Chem ; 67(15): 13033-13055, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39051854

RESUMO

Plasmodium falciparum subtilisin-like serine protease 1 (PfSUB1) is essential for egress of invasive merozoite forms of the parasite, rendering PfSUB1 an attractive antimalarial target. Here, we report studies aimed to improve drug-like properties of peptidic boronic acid PfSUB1 inhibitors including increased lipophilicity and selectivity over human proteasome (H20S). Structure-activity relationship investigations revealed that lipophilic P3 amino acid side chains as well as N-capping groups were well tolerated in retaining PfSUB1 inhibitory potency. At the P1 position, replacing the methyl group with a carboxyethyl substituent led to boralactone PfSUB1 inhibitors with remarkably improved selectivity over H20S. Combining lipophilic end-capping groups with the boralactone reduced the selectivity over H20S. However, compound 4c still showed >60-fold selectivity versus H20S and low nanomolar PfSUB1 inhibitory potency. Importantly, this compound inhibited the growth of a genetically modified P. falciparum line expressing reduced levels of PfSUB1 13-fold more efficiently compared to a wild-type parasite line.


Assuntos
Antimaláricos , Ácidos Borônicos , Plasmodium falciparum , Complexo de Endopeptidases do Proteassoma , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Humanos , Relação Estrutura-Atividade , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Ácidos Borônicos/síntese química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Subtilisinas
14.
Adv Mater ; 36(33): e2401559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958107

RESUMO

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.


Assuntos
Ácidos Borônicos , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Proteômica , Humanos , Estruturas Metalorgânicas/química , Proteômica/métodos , Animais , Ácidos Borônicos/química , Camundongos , Elementos da Série dos Lantanídeos/química , Células HEK293 , Proteoma/análise , Encéfalo/metabolismo
15.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893376

RESUMO

Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.


Assuntos
Ácido Elágico , Impressão Molecular , Extração em Fase Sólida , Ácido Elágico/química , Extração em Fase Sólida/métodos , Impressão Molecular/métodos , Ácidos Borônicos/química , Polímeros Molecularmente Impressos/química , Análise de Alimentos/métodos , Nanoestruturas/química
16.
Chem Commun (Camb) ; 60(52): 6683-6686, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860957

RESUMO

This study introduces boronic ester-based ROS-responsive amphiphilic copolymers for antioxidant drug delivery. Tuning the hydrophobic/hydrophilic balance optimized the size, curcumin encapsulation, ROS-triggered release, cellular uptake, and intracellular ROS scavenging. The lead P1b formulation self-assembled into stable 10 nm micelles enabling rapid ROS-triggered curcumin release and preferential cellular internalization. P1b eliminated over 90% of pathogenic intracellular ROS within 10 minutes, demonstrating a rapid antioxidant therapy.


Assuntos
Ácidos Borônicos , Curcumina , Ésteres , Polímeros , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Ésteres/química , Ésteres/farmacologia , Humanos , Ácidos Borônicos/química , Curcumina/química , Curcumina/farmacologia , Polímeros/química , Micelas , Interações Hidrofóbicas e Hidrofílicas , Antioxidantes/química , Antioxidantes/farmacologia , Portadores de Fármacos/química , Tensoativos/química , Tensoativos/síntese química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
17.
Nat Commun ; 15(1): 5228, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898022

RESUMO

C-1 Glycals serve as pivotal intermediates in synthesizing diverse C-glycosyl compounds and natural products, necessitating the development of concise, efficient and user-friendly methods to obtain C-1 glycosides is essential. The Suzuki-Miyaura cross-coupling of glycal boronates is notable for its reliability and non-toxic nature, but glycal donor stability remains a challenge. Herein, we achieve a significant breakthrough by developing stable glycal boronates, effectively overcoming the stability issue in glycal-based Suzuki-Miyaura coupling. Leveraging the balanced reactivity and stability of our glycal boronates, we establish a robust palladium-catalyzed glycal-based Suzuki-Miyaura reaction, facilitating the formation of various C(sp2)-C(sp), C(sp2)-C(sp2), and C(sp2)-C(sp3) bonds under mild conditions. Notably, we expand upon this achievement by developing the DNA-compatible glycal-based cross-coupling reaction to synthesize various glycal-DNA conjugates. With its excellent reaction reactivity, stability, generality, and ease of handling, the method holds promise for widespread appication in the preparation of C-glycosyl compounds and natural products.


Assuntos
Ácidos Borônicos , Paládio , Paládio/química , Catálise , Ácidos Borônicos/química , Glicosídeos/química , Glicosídeos/síntese química , DNA/química
18.
J Am Chem Soc ; 146(25): 17211-17219, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864331

RESUMO

Gene therapy provides exciting new therapeutic opportunities beyond the reach of traditional treatments. Despite the tremendous progress of viral vectors, their high cost, complex manufacturing, and side effects have encouraged the development of nonviral alternatives, including cationic polymers. However, these are less efficient in overcoming cellular barriers, resulting in lower transfection efficiencies. Although the exquisite structural tunability of polymers might be envisaged as a versatile tool for improving transfection, the need to fine-tune several structural parameters represents a bottleneck in current screening technologies. By taking advantage of the fast-forming and strong boronate ester bond, an archetypal example of dynamic covalent chemistry, a highly adaptable gene delivery platform is presented, in which the polycation synthesis and pDNA complexation occur in situ. The robustness of the strategy entitles the simultaneous evaluation of several structural parameters at will, enabling the accelerated screening and adaptive optimization of lead polymeric vectors using dynamic covalent libraries.


Assuntos
Ácidos Borônicos , Polímeros , Ácidos Borônicos/química , Polímeros/química , Humanos , Técnicas de Transferência de Genes , DNA/química , Vetores Genéticos/química , Estrutura Molecular
19.
Bioorg Med Chem ; 109: 117790, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906067

RESUMO

The immunoproteasome subunit LMP7 (ß5i)/LMP2 (ß1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit ß5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over ß5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.


Assuntos
Ácidos Borônicos , Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Animais , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/síntese química , Camundongos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Ácidos Borônicos/síntese química , Humanos , Relação Estrutura-Atividade , Cisteína Endopeptidases/metabolismo , Estrutura Molecular , Simulação de Dinâmica Molecular , Descoberta de Drogas
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124550, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823240

RESUMO

Near-infrared organic fluorescent probes have great need in biological sciences and medicine but most of them are still largely unable to meet demand. In this work, a delicate multipurpose organic fluorescent probe (DPPM-TPA) with aggregation-induced emission performances is designed and prepared by facile method to reflect fluorescence labeling, two-photon imaging, and long-term fluorescent tracking. Specifically, DPPM-TPA NPs was constructed from 4-(diphenylamino)phenylboronic acid and DPPM-Br by classical Suzuki coupling reaction and then coated with F127. Such nanoprobe possessed high stability in diverse medium under ambient temperatures, low cytotoxicity, and brilliant fluorescence performance. More importantly, DPPM-TPA NPs showed excellent two-photon imaging and extraordinary long-term fluorescence tracing capacity to malignant tumor, and it can last up to 9 days. These results indicated that DPPM-TPA NPs is expected to serve as a fluorescent probe for photodiagnostic and providing a new idea for the development of long-term fluorescent tracker.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Animais , Neoplasias , Camundongos , Espectrometria de Fluorescência , Nanopartículas/química , Linhagem Celular Tumoral , Ácidos Borônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA