RESUMO
Despite widespread cervical cancer (CC) screening programs, low participation has led to high morbidity and mortality rates, especially in developing countries. Because early-stage CC often has no symptoms, a non-invasive and convenient diagnostic method is needed to improve disease detection. In this study, we developed a new approach for differentiating both CC and cervical intraepithelial neoplasia (CIN)2/3, a precancerous lesion, from healthy individuals by exploring CC fatty acid metabolic reprogramming. Analysis of public datasets suggested that various fatty acid metabolizing enzymes were expressed at higher levels in CC tissues than in normal tissues. Correspondingly, 11 free fatty acids (FFAs) showed significantly different serum levels in CC patient samples compared with healthy donor samples. Nine of these 11 FFAs also displayed significant alterations in CIN2/3 patients. We then generated diagnostic models using combinations of these FFAs, with the optimal model including stearic and dihomo-γ-linolenic acids. Receiver operating characteristic curve analyses suggested that this diagnostic model could detect CC and CIN2/3 more accurately than using serum squamous cell carcinoma antigen level. In addition, the diagnostic model using FFAs was able to detect patients regardless of clinical stage or histological type. Overall, the serum FFA diagnostic model developed in this study could be a powerful new tool for the non-invasive early detection of CC and CIN2/3.
Assuntos
Ácidos Esteáricos , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/sangue , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/diagnóstico , Ácidos Esteáricos/sangue , Adulto , Ácido 8,11,14-Eicosatrienoico/sangue , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Curva ROCRESUMO
In the realm of intracellular drug delivery, overcoming the barrier of endosomal entrapment stands as a critical factor influencing the effectiveness of nanodrug delivery systems. This study focuses on the synthesis of an acid-sensitive fatty acid derivative called imidazole-stearic acid (IM-SA). Leveraging the proton sponge effect attributed to imidazole groups, IM-SA was anticipated to play a pivotal role in facilitating endosomal escape. Integrated into the lipid core of solid lipid nanoparticles (SLNs), IM-SA was paired with hyaluronic acid (HA) coating on the surface of SLNs loading with curcumin (CUR). The presence of IM-SA and HA endowed HA-IM-SLNs@CUR with dual functionalities, enabling the promotion of endosomal escape, and specifical targeting of liver cancer. HA-IM-SLNs@CUR exhibited a particle size of â¼228â¯nm, with impressive encapsulation efficiencies (EE) of 87.5â¯% ± 2.3â¯% for CUR. Drugs exhibit significant pH sensitive release behavior. Cellular experiments showed that HA-IM-SLN@CUR exhibits enhanced drug delivery capability. The incorporation of IM-SA significantly improved the endosomal escape of HA-IM-SLN@CUR, facilitating accelerated intracellular drug release and increasing intracellular drug concentration, exhibiting excellent growth inhibitory effects on HepG2 cells. Animal experiments revealed a 3.4-fold increase in CUR uptake at the tumor site with HA-IM-SLNs@CUR over the free CUR, demonstrating remarkable tumor homing potential with the tumor growth inhibition rate of 97.2â¯%. These findings indicated the significant promise of HA-IM-SLNs@CUR in the realm of cancer drug delivery.
Assuntos
Antineoplásicos , Curcumina , Endossomos , Nanopartículas , Tamanho da Partícula , Curcumina/farmacologia , Curcumina/química , Humanos , Nanopartículas/química , Animais , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Células Hep G2 , Liberação Controlada de Fármacos , Camundongos , Lipídeos/química , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Propriedades de Superfície , Portadores de Fármacos/química , Ácidos Esteáricos/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis/química , Imidazóis/farmacologia , Camundongos Nus , Ácido Hialurônico/química , Camundongos Endogâmicos BALB C , LipossomosRESUMO
The continuous feeding-mixing system ensures the composition uniformity down to the tableting continuous manufacturing line so that a quality end-product is consistently delivered. Near-infrared spectroscopy (NIRS) enables in-line assessment of the blend's critical quality attributes in real-time. In this study, the effect of total feed rate and impeller speed on the continuous blending process monitored in-line by NIRS was examined by principal component analysis (PCA), ANOVA simultaneous component analysis (ASCA) and partial least squares (PLS) regression. Process data were generated by a factorial experimental design with process parameters and a constant formulation comprised of: 30 % (wt/wt) ibuprofen, 67.5 % (wt/wt) microcrystalline cellulose, 2 % (wt/wt) of sodium starch glycolate and 0.5 % (wt/wt) of magnesium stearate. The PCA hinted at the prevalence of impeller speed effect on ibuprofen concentration due to path length variation of the NIR light caused by the fluidized behaviour in the powder blend as a result of high speed ranges (>300 rpm). The ASCA model indicated that while both impeller speed and total feed rate effects were statistically significant (p-value=0.004), the impeller speed was the factor that contributed the most to the spectral variance (55.5 %). The PLS regression model for the ibuprofen content resulted in a RMSECV of 1.3 % (wt/wt) and showed that impeller speed was yet again the factor that exerted the major influence on spectral variance, owing to its wavelength-dependent effect that prevents common pre-processing techniques from eliminating it across the entire NIR range. The best sample presentation to the NIR probe was achieved at low impeller speed ranges (<600 rpm) and low total feed rates (<15 kg/h), such that it enhanced the PLS model ability to predict the ibuprofen concentration in the blend.
Assuntos
Celulose , Ibuprofeno , Análise de Componente Principal , Espectroscopia de Luz Próxima ao Infravermelho , Ácidos Esteáricos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ibuprofeno/química , Celulose/química , Ácidos Esteáricos/química , Análise dos Mínimos Quadrados , Amido/química , Amido/análogos & derivados , Excipientes/química , Comprimidos , Composição de Medicamentos/métodosRESUMO
Acute lung injury (ALI) arises from an excessive inflammatory response, usually progressing to acute respiratory distress syndrome (ARDS) if not promptly addressed. There is currently a limited array of effective treatments available for ALI. In this study, we developed disulfide bond-bridged prodrug self-assembled nanoparticles (referred to as DSSS NPs). These nanoparticles were consisted of Dexamethasone (Dex) and stearic acid (SA), and were designed to target and treat ALI. DSSS NPs demonstrated a substantial drug loading capacity with 37.75 % of Dex, which is much higher than conventional nanomedicines (usually < 10 %). Moreover, they exhibited the potential to specifically target injured lung tissue and inflammatory microenvironment-responsive release drugs. Consequently, DSSS NPs reduced significantly the levels of pro-inflammatory cytokines and tissue damage in mice with ALI induced by lipopolysaccharide (LPS). Overall, DSSS NPs offer a promising strategy for treatment of acute lung injury.
Assuntos
Lesão Pulmonar Aguda , Anti-Inflamatórios , Dexametasona , Dissulfetos , Lipopolissacarídeos , Nanopartículas , Oxirredução , Ácidos Esteáricos , Dexametasona/administração & dosagem , Dexametasona/química , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Nanopartículas/química , Dissulfetos/química , Camundongos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Esteáricos/química , Masculino , Liberação Controlada de Fármacos , Citocinas/metabolismo , Pró-Fármacos/química , Pró-Fármacos/administração & dosagem , Humanos , Camundongos Endogâmicos C57BL , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Portadores de Fármacos/químicaRESUMO
Magnesium stearate (MgSt) and lactose fines are often used as ternary components in carrier-based dry powder inhalers (DPIs) to improve fine particle fraction (FPF), but whether they act synergistically to improve aerosolization performance of DPI formulations is currently less studied. In addition, the applicability of utilizing powder rheological parameters to predict the FPF needs to be further verified. Thus, in this study, using fluticasone propionate (FP) as a model drug, effect of lactose fines addition in 0.5% MgSt containing DPI formulations on their powder and aerodynamic properties was explored. Influence of MgSt and fines mixing order on the DPIs performance was also investigated. The results showed that addition of lactose fines (1-10%) in 0.5% MgSt containing formulations could further improve flowability and enhance adhesion of the mixtures, and they could act synergistically to improve FPF. Moreover, the presence of 0.5% MgSt can greatly reduce the amount of lactose fines required to achieve the comparable FPF. The mixing order can affect distribution of MgSt on the carrier surface, with higher FPF noted when MgSt was mixed with carrier first, followed by lactose fines. A good linear relationship between powder rheological parameters such as basic flowability energy (BFE), Permeability and FPF was disclosed. In conclusion, in FP based DPIs, MgSt and lactose fines act synergistically to enhance FPF by tuning powder characteristics. Good flowability (27.39%) and strong adhesion (72.61%) contributed to the enhanced drug deposition in the lung.
Assuntos
Aerossóis , Inaladores de Pó Seco , Fluticasona , Lactose , Tamanho da Partícula , Pós , Ácidos Esteáricos , Lactose/química , Fluticasona/química , Fluticasona/administração & dosagem , Pós/química , Ácidos Esteáricos/química , Excipientes/química , Reologia , Composição de Medicamentos/métodos , Administração por Inalação , Química Farmacêutica/métodos , Broncodilatadores/administração & dosagem , Broncodilatadores/químicaRESUMO
The aim of the present study was to elucidate unknown effects of intraocular fatty acids (ioFAs) including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), arachidonic acid (C20:4), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6) on the outer blood-retinal barrier (oBRB). For this purpose, human retinal pigment epithelium cell line ARPE19 was subjected to analyses for evaluating the following biological phenotypes: (1) cell viability, (2) cellular metabolic functions, (3) barrier functions by trans-epithelial electrical resistance (TEER), and (4) expression of tight junction (TJ) molecules. In the presence of 100 nM ioFAs, no significant effects on cell viability of ARPE19 cells was observed. While treatment with EPA or DHA tended to reduce non-mitochondrial oxygen consumption, most indices in mitochondrial functions were not markedly affected by treatment with ioFAs in ARPE19 cells. On the other hand, ioFAs except for palmitic acid and stearic acid significantly increased basal extracellular acidification rates, suggesting activated glycolysis or increased lactate production. Interestingly, TEER values of planar ARPE19 monolayer were significantly increased by treatment any ioFAs. Consistently, gene expression levels of TJ proteins were increased by treatment with ioFAs. Collectively, the findings presented herein suggest that ioFAs may contribute to reinforcement of barrier functions of the oBRB albeit there are some differences in biological effects depending on the type of ioFAs.
Assuntos
Barreira Hematorretiniana , Epitélio Pigmentado da Retina , Humanos , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Esteáricos/farmacologia , Ácido Linoleico/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácido Oleico/farmacologia , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismoRESUMO
Converting fatty acids into specialty chemicals is sustainable but hindered by the low efficiency and thermal instability of current oleic acid hydratases, along with mass transfer limitations in emulsion reactions. This study introduces an optimized continuous flow micro-reactor (CFMR) that efficiently transforms oleic acid at low (15â g L-1) and high (50â g L-1) concentrations, improving reaction efficiency and overcoming key conversion barriers. The first CFMR model showed reaction speeds surpassing traditional batch stirred tank reactors (BSTR). Optimizations were performed on three key components: liquid storage, mixer, and reaction section of the CFMR, with each round's best conditions carried into the next. This achieved a space-time yield of 597â g L-1 d-1 at a 15â g L-1 oleic acid load. To further enhance the yield, we optimized the emulsifier system to solve incomplete emulsification and developed a two-component feed microreactor (TCFMR) that addressed mass transfer limitations caused by the product at high substrate loads, reaching a 91 % conversion of 50â g L-1 oleic acid in 30â minutes, with a space-time yield of 2312â g L-1 d-1. These advancements represent significant progress in utilizing fatty acids and advancing sustainable chemical synthesis.
Assuntos
Reatores Biológicos , Ácido Oleico , Ácidos Esteáricos , Ácido Oleico/química , Ácidos Esteáricos/químicaRESUMO
The goal of this research was to analyse the synergistic effect between selected plant extracts with zinc oxide particles, and zinc stearate. The influence of ZnO on the antimicrobial effectiveness of the selected extracts was confirmed in previous research carried out by the authors. However, the impact of zinc stearate on extract activity has yet to be analysed. The aim was to cover PLA films with active coatings based on hydroxy-propyl-methyl-cellulose (HPMC), or/and ethyl cellulose (EC) containing plant extracts and ZnO which has a synergistic effect. An additional aim was to use a CO2 extract of raspberry seed (RSE) with zinc stearate as active additives within the coatings. An examination of the antimicrobial properties (against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas syringae and Φ6 bacteriophage) of the covered films, as well as an investigation of layer presence with regards to PLA morphology (SEM, ATR-FTIR analysis) was carried out. The research work that was performed indicated that black chokeberry extract (ChE) and zinc oxide particles were effective against S. aureus, P. syringae and B. subtilis strains. In addition, the ChE with zinc stearate (ZnSt) was active against all analysed strains. The HPMC with ChE and ZnO as additives had antimicrobial properties against S. aureus, P. syringae and E. coli strains. The ChE was found to inhibit the growth of all of the analysed bacterial strains. When considering the coatings based on EC with the CO2 extract of raspberry seed (RSE) and ZnO, it was noted that they were only active against Gram-negative bacteria. The results of the experiments confirmed that AC1 (EC with RSE with ZnO) and AC2 (EC with RSE with ZnSt) coatings were not active against a phi6 bacteriophage. The HPMC coating containing the AC3 layer (ChE and ZnO) eliminated Φ6 particles, confirming its antiviral properties. In addition, the presence of the active (AC1, AC2 and AC3) coatings was confirmed by SEM and FTIR analysis.
Assuntos
Extratos Vegetais , Rubus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rubus/química , Testes de Sensibilidade Microbiana , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Inflammation is implicated in the etiology of obesity-related diseases. Thromboxane-prostanoid receptor (TPR) is known to play a role in mediating an inflammatory response in a variety of cells. Gut-derived lipopolysaccharide (LPS), a TLR4 agonist, is elevated in obesity. Moreover, free fatty acids (FFAs) are important mediators of obesity-related inflammation. However, the role and mechanisms by which TPR regulates the inflammatory response in human immune cells remain unclear. We sought to determine the link between TPR and obesity and the role/mechanisms by which TPR alters LPS- or stearic acid (SA)-induced inflammatory responses in PBMCs. Cells were pre-treated with agents blocking TPR signaling, followed by treatment with LPS or stearic acid (SA). Our findings showed that TPR mRNA levels are higher in PBMCs from individuals with obesity. Blockade of TPR as well as ROCK, which acts downstream of TPR, attenuated LPS- and/or SA-induced pro-inflammatory responses. On the other hand, TPR activation using its agonist enhanced the pro-inflammatory effects of LPS and/or SA. Of note, the TPR agonist by itself elicits an inflammatory response, which was attenuated by blocking TPR or ROCK. Our data suggest that TPR plays a key role in promoting an inflammatory response in human PBMCs, and this effect is mediated via TLR4 and/or ROCK signaling.
Assuntos
Inflamação , Leucócitos Mononucleares , Lipopolissacarídeos , Receptores de Tromboxanos , Transdução de Sinais , Ácidos Esteáricos , Humanos , Lipopolissacarídeos/farmacologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Ácidos Esteáricos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Receptores de Tromboxanos/metabolismo , Receptores de Prostaglandina/metabolismo , Obesidade/metabolismo , Masculino , FemininoRESUMO
Plastic production has experienced a significant increase in the last sixty years due to its cost-efficiency and adaptable characteristics, leading to the extensive use of additives to improve its performance and longevity. Due to the high demand for plastic, plastic waste production has increased, contaminating the environment and living beings by leaching additives, among other substances. Pyrolysis stands out among recycling techniques because it can handle mixed polymer waste feedstock. However, understanding the pyrolyzates distribution of additives is fundamental to assessing pyrolysis process of plastic waste. This study investigated the pyrolysis product distributions of two commonly used antioxidants, namely, Irgafos 168 and zinc stearate (ZnSt), using one-dimensional gas chromatography equipped with a quadruple mass spectrometer (GC-MS) and two-dimensional gas chromatography coupled to flame ionization detector and time-of-flight mass spectrometer (GC×GC-FID/TOF-MS). While GC separation technique provided limited information on product distribution, GC×GC offered enhanced resolution and identification of the decomposition products. In the pyrolysis of Irgafos 168 at 550 °C, GC identified 18 products, while GC×GC identified 198 products, representing an increase of approximately 11-fold. Similarly, for ZnSt, GC identified 67 products, while GC×GC identified 434 products, representing a 6-fold increase. GC×GC identified decomposition products from 15 different chemical classes for Irgafos 168 and 16 chemical classes for ZnSt, compared to 4 and 11 chemical classes identified by GC, respectively. Phenols and their derivatives were the major chemical class in the decomposition products of Irgafos 168 with a yield of 9.51 wt.%. In contrast, olefinic products were the dominant ones for ZnSt, with a yield of 9.73 wt.%. The major decomposition product of Irgafos 168 and ZnSt was 2tertbutylmethylphenol (C11H16O) and C6 olefin (C6H12) with yields of 3.88 wt.%, and 1.13 wt.%, respectively. Utilizing the GC×GC separation method improved the ability to identify decomposition products, which can ultimately lead to a better understanding of antioxidant degradation that occurs during the pyrolysis process. GC×GC also provided thorough characterization of minor and co-eluted products along with major antioxidant degradation products. Additionally, the decomposition product distribution of Irgafos 168 and ZnSt was also compared with the primary antioxidants, Irganox 1010, Irganox 1076, and BHT, studied in part 1. The analysis indicated that the olefinic chemical class was the predominant one in Irganox 1010, Irganox 1076, and ZnSt, while ketones were the major chemical class in the decomposition of BHT and phenolics had the highest yield in Irgafos 168.
Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Ácidos Esteáricos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/análise , Antioxidantes/química , Ácidos Esteáricos/análise , Ácidos Esteáricos/química , Cromatografia Gasosa/métodos , Plásticos/químicaRESUMO
Previous RS5 (type 5 resistant starch) research has significantly broadened starch use and benefited society, yet the effects of the molecular weight of amylose on RS5 remain underexplored. In this study, amyloses with different molecular weights were complexed with caproic acid (C6), lauric acid (C12), and stearic acid (C18) to observe the effects of the molecular weight of amylose on the structure and in vitro digestive properties of RS5. Gel permeation chromatography revealed that the peak average molecular weight (Mp) values of high-amylose cornstarch NF-CGK (CGK), high-amylose cornstarch obtained via cornstarch via autoclave (high temperature and high pressure)-cooling combined pullulanase enzymatic hydrolysis (CTE), and high-amylose cornstarch NF-G370 (HCK) were 21,282, 171,537, and 188,084 before fatty acid complexation, respectively. Additionally, their weight average molecular weight (Mw) values of 32,429, 327,344, and 410,610 and hydrolysis rates of 58.12 %, 86.77 %, and 64.58 %, respectively. The hydrolysis rate of low-Mw amylose (GCK) complexes with fatty acids was lower than that of HCK and CTE starch-lipid complexes. However, HCK and CTE having similar molecular weights, there was no significant difference in the hydrolysis rate of starch-lipid complexes. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and complexing index analyses confirmed the formation of these complexes. This study proposed the mechanism of RS5 formation and provided guidance for its future development.
Assuntos
Amilose , Ácidos Láuricos , Peso Molecular , Amilose/química , Ácidos Láuricos/química , Hidrólise , Amido/química , Amido/metabolismo , Digestão , Ácidos Esteáricos/química , Lipídeos/química , CaprilatosRESUMO
This study aimed to explore the effects of various lipids on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles (EBNs) with and without 20% high-amylose corn starch (HACS). Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction revealed that lauric acid bound more strongly to starch than did stearic acid and oleic acid, and the binding capacity of fatty acids with starch was stronger than that of glycerides. The presence of HACS during extrusion facilitated increased formation of starch-lipid complexes. Evaluations of cooking quality and digestion characteristics showed that EBNs containing 20% HACS and 0.5% glycerol monooleate demonstrated the lowest cooking loss (7.28%), and that with 20% HACS and 0.5% oleic acid displayed the lowest predicted glycemic index (pGI) (63.54) and highest resistant starch (RS) content (51.64%). However, excessive starch-lipid complexes were detrimental to EBNs cooking quality and the resistance of starch to digestive enzymes because of the damage to the continuity of the starch gel network. This study establishes a fundamental basis for the development of EBNs with superior cooking quality and a relatively lower GI.
Assuntos
Culinária , Digestão , Fagopyrum , Ácidos Graxos , Amido , Fagopyrum/química , Ácidos Graxos/química , Amido/química , Glicerídeos/química , Índice Glicêmico , Espectroscopia de Infravermelho com Transformada de Fourier , Amilose/química , Difração de Raios X , Varredura Diferencial de Calorimetria , Ácidos Esteáricos/química , Ácido Oleico/química , Ácidos Láuricos/químicaRESUMO
Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.
Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade , Animais , Masculino , Feminino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Fezes/microbiologia , Camundongos ObesosRESUMO
Genistein (Gen); a naturally occurring isoflavone, acts as a tyrosine kinase inhibitor and efficiently downregulates inflammatory cytokines, which are pivotal in eye inflammation. Also, Gen suffers from sparse ocular bioavailability due to poor solubility. In this work, nanostructured lipid carriers (NLCs) were successfully fabricated by using solid (stearic acid and compritol) and liquid (oleic acid) lipids. The optimized Gen-loaded NLCs showed a nanosize range of 140-246 nm, ≥ 98 % entrapment efficiency, and controlled release over 48 h. The ζ-potential of NLCs was increased from -27.3 mV to 25-27.4 mV due to surface modification with chitosan (CS) or eudragit RS100 (ERS 100). All NLCs showed prominent biocompatibility with enhanced cellular uptake on corneal stromal fibroblasts. Moreover, the different NLCs were incorporated into a mucoadhesive in situ gel. The optimized in situ gel (G9), containing 20 % poloxamers and 0.5 % hydroxyethyl cellulose, exhibited excellent gelling ability within 10.5 s, gelling temperature at 33.1 ± 0.6 â, spreadability diameter of 4.73 ± 0.12 cm, shear-thinning behavior, and 20 min ex vivo mucoadhesion time with drug release for 120 h. The in vivo results showed distinguished permeation and distribution potential for ocular delivery. In vivo anti-inflammatory effects after 3 days of treatment with CS-Gen-NLCs/G9 and ERS-Gen-NLCs/G9 revealed a downregulation of interleukin-6 levels in the cornea and retina compared to the untreated group. Our research highlights the promising anti-inflammatory potential of ERS-Gen-NLCs/G9 as an efficient, non-irritant Gen nanodelivery system for managing anterior and posterior ocular inflammation.
Assuntos
Anti-Inflamatórios , Quitosana , Portadores de Fármacos , Liberação Controlada de Fármacos , Géis , Genisteína , Genisteína/administração & dosagem , Genisteína/farmacocinética , Genisteína/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Quitosana/química , Portadores de Fármacos/química , Coelhos , Resinas Acrílicas/química , Lipídeos/química , Nanoestruturas/administração & dosagem , Masculino , Córnea/metabolismo , Córnea/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Administração Oftálmica , Ácidos Esteáricos/química , Nanopartículas , Ácido Oleico/química , Preparações de Ação Retardada , HumanosRESUMO
Over the past decade, continuous manufacturing has garnered significant attention in the pharmaceutical industry. Still, numerous continuous unit operations need developments, such as powder blending and feeding at low and high throughputs. Especially the continuous and consistent feeding of solid drug substances and excipients at low feed rates remains challenging. This study demonstrates a micro-feeder capable of feeding poorly-flowing pharmaceutical powders at low feed rates. The system performance was investigated using three grades of pharmaceutical powder: croscarmellose sodium (cohesive), magnesium stearate (very cohesive), and an active ingredient, paracetamol (non-flowing). The results show that the micro-feeder can continuously and consistently feed powders at low flow rates (<20 g/h) with low variability (<10 % for non-flowing materials and < 5 % for cohesive materials). Notably, the micro-feeder achieves these results without any feedback control and remains unaffected by refilling, making it a truly versatile and industry-relevant solution. The study's results demonstrate that this micro-feeder system effectively tackles the challenge of consistent and accurate powder feeding at low rates.
Assuntos
Acetaminofen , Excipientes , Pós , Ácidos Esteáricos , Tecnologia Farmacêutica , Pós/química , Acetaminofen/química , Ácidos Esteáricos/química , Excipientes/química , Tecnologia Farmacêutica/métodos , Carboximetilcelulose Sódica/química , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Indústria Farmacêutica/métodosRESUMO
Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and ß-cyclodextrin-modified Ag nanoparticles (ß-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 µM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.
Assuntos
Histamina , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Histamina/análise , Histamina/química , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Compostos Azo/química , Ácidos Esteáricos/química , Animais , Peixes , Propriedades de SuperfícieRESUMO
In order to introduce a cost-effective strategy method for commercial scale dry granulation at the early clinical stage of drug product development, we developed dry granulation process using formulation without API, fitted and optimized the process parameters adopted Design of Experiment (DOE). Then, the process parameters were confirmed using one formulation containing active pharmaceutical ingredient (API). The results showed that the roller pressure had significant effect on particle ratio (retained up to #60 mesh screen), bulk density and tapped density. The roller gap had significant influence on particle ratio and specific energy. The particle ratio was significantly affected by the mill speed (second level). The tabletability of the powder decreased after dry granulation. The effect of magnesium stearate on the tabletability was significant. In the process validation study, the properties of the prepared granules met the requirements for each response studied in the DOE. The prepared tablets showed higher tensile strength, good content uniformity of filled capsules, and the dissolution profiles of which were consistent with that of clinical products. This drug product process development and research strategies could be used as a preliminary experiment for the dry granulation process in the early clinical stage.
Assuntos
Comprimidos , Comprimidos/química , Tamanho da Partícula , Composição de Medicamentos , Pós/química , Ácidos Esteáricos/química , Resistência à Tração , Excipientes/química , SolubilidadeRESUMO
The compendial USPã701ã disintegration test method offers a crucial pass/fail assessment for immediate release tablet disintegration. However, its single end-point approach provides limited insight into underlying mechanisms. This study introduces a novel calorimetric approach, aimed at providing comprehensive process profiles beyond binary outcomes. We developed a novel disintegration reaction calorimeter to monitor the heat release throughout the disintegration process and successfully obtained enthalpy change profiles of placebo tablets with various porosities. The formulation comprised microcrystalline cellulose (MCC), anhydrous lactose, croscarmellose sodium (CCS), and magnesium stearate (MgSt). An abrupt temperature rise was observed after introducing the disintegration medium to tablets, and the relationship between the heat rise time and the tablet's porosity was investigated. The calorimeter's sensitivity was sufficient to discern distinct heat changes among individual tablets, and the analysis revealed a direct correlation between the two. Higher porosity corresponded to shorter heat rise time, indicating faster disintegration rates. Additionally, the analysis identified a concurrent endothermic process alongside the anticipated exothermic phenomenon, potentially associated with the dissolution of anhydrous lactose. Since lactose is the only soluble excipient within the blend composition, the endothermic process can be attributed to the absorption of heat as lactose molecules dissolve in water. The findings from this study underscore the potential of utilising calorimetric methods to quantify the wettability of complex compounds and, ultimately, optimise tablet formulations.
Assuntos
Calorimetria , Celulose , Excipientes , Temperatura Alta , Lactose , Ácidos Esteáricos , Comprimidos , Lactose/química , Celulose/química , Excipientes/química , Porosidade , Ácidos Esteáricos/química , Calorimetria/métodos , Solubilidade , Carboximetilcelulose Sódica/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Composição de Medicamentos/métodosRESUMO
Limited attempts have been made previously to develop high-loading CBD inhalable powders, which are essential for high dose delivery. Therefore, this study aimed to develop and characterise inhalable powders with ≥ 95 % w/w CBD by wet ball milling. The effects of magnesium stearate (2 % and 5 %) and inhaler resistance (low-resistance and high-resistance RS01 inhalers) on aerosol performance were also compared. Wet ball milling produced CBD powders with > 50 % production yield. The milled particles showed irregular shapes. The powders were crystalline with minimal amorphous content, low residual solvent level (<1%), and low moisture sorption (<4%). Magnesium stearate improved both the emitted and fine particle fractions. The aerodynamic particle size distribution of the formulations differed between the low-resistance and high-resistance RS01 inhalers. The latter decreased throat deposition but increased inhaler retention. The dissolution profiles showed that all three formulations released CBD steadily and plateaued at 30 min. The best scenario was CBD with 5 % magnesium stearate dispersed from the high resistance RS01 inhaler, showing the highest FPF with the lowest throat deposition. This combination may be tested in vivo in the future to investigate its pharmacokinetic profile.
Assuntos
Canabidiol , Tamanho da Partícula , Pós , Ácidos Esteáricos , Administração por Inalação , Ácidos Esteáricos/química , Canabidiol/administração & dosagem , Canabidiol/química , Canabidiol/farmacocinética , Aerossóis , Inaladores de Pó Seco , Excipientes/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Nebulizadores e Vaporizadores , Composição de Medicamentos/métodos , SolubilidadeRESUMO
Notwithstanding the several investigations of the hydroxy fatty acids (hFAs)' physiological functions, studies focusing on their anti-obesity effects are limited. This study investigated the anti-obesity effects of 4 hFAs-10-hydroxy stearic acid (10-hSA), 12-hydroxy stearic acid (12-hSA), 9,12-hydroxy stearic acid (9,12-dhSA), and 12-hydroxy oleic acid (12-hOA)-on the 3T3-L1 cells. All hFAs suppressed lipid accumulation, with 10-hSA and 12-hOA exhibiting the strongest suppression, followed by 12-hSA and 9,12-hSA. This trend was similar to that observed for the glycerol-3-phosphate dehydrogenase (GPDH) activity level. Contrastingly, only 9,12-dhSA suppressed cell viability. The mRNA levels of HK1 and Aldoa were markedly suppressed by 10-hSA and 12-hSA compared to the control. Additionally, mRNA expression of Gyk was considerably suppressed by 12-hSA. Thus, all hFAs suppressed lipid accumulation by suppressing GPDH activity, although their molecular mechanisms were different. These findings will aid the application of hFAs in the food and medical industries.